Learning spatial patterns and temporal dependencies for traffic accident severity prediction: A deep learning approach

计算机科学 卷积神经网络 深度学习 数据预处理 交通事故 预处理器 数据挖掘 事故(哲学) 人工智能 机器学习 人工神经网络 特征(语言学) 运输工程 工程类 哲学 语言学 认识论
作者
Fares Alhaek,Weichao Liang,Taha M. Rajeh,Muhammad Hafeez Javed,Tianrui Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111406-111406 被引量:10
标识
DOI:10.1016/j.knosys.2024.111406
摘要

Traffic accidents have a substantial impact on human life and property, resulting in millions of injuries every year. To ensure road safety and enhance the research in this direction, it is necessary to develop methods that can efficiently predict and classify the accident severity. However, traffic accident datasets may contain a large number of features, making it challenging to extract relevant information and patterns from high-dimensional data. Moreover, traffic accidents may be influenced by multiple factors and temporal dependencies, leading to a dynamic impact of each factor on accident severity over time. To address these challenges, we propose a novel deep-learning approach for predicting traffic accident severity. Specifically, we first conduct a thorough data preprocessing step to clean the data and ensure its quality. Then, a Convolutional Neural Network (CNN) is introduced to extract spatial features and patterns from the high-dimensional data, followed by a Bidirectional Long Short-Term Memory network (BiLSTM) to capture the temporal dependencies between various factors that affect traffic accidents. We also implement attention mechanisms to weigh the importance of each feature in the prediction, thereby reducing the impact of noisy or irrelevant data. To evaluate the effectiveness of our approach, we conduct experiments on a real-world traffic accident dataset from two cities. The results demonstrate the practicality and effectiveness of our framework for traffic accident severity prediction, with potential to enhance road safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
舒服的从阳完成签到 ,获得积分10
1秒前
2秒前
3秒前
zdl完成签到,获得积分10
3秒前
小二郎应助Fury采纳,获得10
4秒前
Gxx完成签到,获得积分10
5秒前
Cyneburg完成签到,获得积分10
5秒前
云山发布了新的文献求助10
6秒前
英俊的铭应助大牛采纳,获得10
6秒前
荔枝多酚发布了新的文献求助10
6秒前
哈哈哈哈哈哈完成签到,获得积分10
6秒前
冰淇淋完成签到,获得积分10
7秒前
斐嘿嘿完成签到,获得积分10
7秒前
领导范儿应助MQRR采纳,获得10
9秒前
漂亮的千秋完成签到,获得积分20
9秒前
DragonAca发布了新的文献求助10
9秒前
魔幻海豚完成签到 ,获得积分10
11秒前
12秒前
Hello应助daifei采纳,获得10
12秒前
13秒前
diu应助高高采纳,获得10
13秒前
14秒前
14秒前
squrreil完成签到,获得积分10
15秒前
15秒前
荔枝多酚完成签到,获得积分10
15秒前
英俊的铭应助xingyan采纳,获得10
18秒前
Fury发布了新的文献求助10
18秒前
DragonAca完成签到,获得积分10
18秒前
18秒前
狂野的念波完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
22秒前
xiaoleeyu完成签到,获得积分10
23秒前
顺利的半蕾完成签到,获得积分10
24秒前
企鹅完成签到,获得积分10
24秒前
hhhh发布了新的文献求助10
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242882
求助须知:如何正确求助?哪些是违规求助? 2887018
关于积分的说明 8245738
捐赠科研通 2555585
什么是DOI,文献DOI怎么找? 1383717
科研通“疑难数据库(出版商)”最低求助积分说明 649728
邀请新用户注册赠送积分活动 625625