已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning spatial patterns and temporal dependencies for traffic accident severity prediction: A deep learning approach

计算机科学 卷积神经网络 深度学习 数据预处理 交通事故 预处理器 数据挖掘 事故(哲学) 人工智能 机器学习 人工神经网络 特征(语言学) 运输工程 工程类 哲学 语言学 认识论
作者
Fares Alhaek,Weichao Liang,Taha M. Rajeh,Muhammad Hafeez Javed,Tianrui Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111406-111406 被引量:10
标识
DOI:10.1016/j.knosys.2024.111406
摘要

Traffic accidents have a substantial impact on human life and property, resulting in millions of injuries every year. To ensure road safety and enhance the research in this direction, it is necessary to develop methods that can efficiently predict and classify the accident severity. However, traffic accident datasets may contain a large number of features, making it challenging to extract relevant information and patterns from high-dimensional data. Moreover, traffic accidents may be influenced by multiple factors and temporal dependencies, leading to a dynamic impact of each factor on accident severity over time. To address these challenges, we propose a novel deep-learning approach for predicting traffic accident severity. Specifically, we first conduct a thorough data preprocessing step to clean the data and ensure its quality. Then, a Convolutional Neural Network (CNN) is introduced to extract spatial features and patterns from the high-dimensional data, followed by a Bidirectional Long Short-Term Memory network (BiLSTM) to capture the temporal dependencies between various factors that affect traffic accidents. We also implement attention mechanisms to weigh the importance of each feature in the prediction, thereby reducing the impact of noisy or irrelevant data. To evaluate the effectiveness of our approach, we conduct experiments on a real-world traffic accident dataset from two cities. The results demonstrate the practicality and effectiveness of our framework for traffic accident severity prediction, with potential to enhance road safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
FOX完成签到,获得积分10
刚刚
dengdeng完成签到,获得积分10
1秒前
2秒前
l900完成签到,获得积分20
2秒前
dengdeng发布了新的文献求助10
4秒前
吴荣方发布了新的文献求助10
6秒前
壮观大炮完成签到,获得积分10
6秒前
小蘑菇应助热情的未来采纳,获得10
7秒前
Jasper应助轻松的小曾采纳,获得10
8秒前
酷波er应助内向的绿海采纳,获得10
11秒前
充电宝应助内向的绿海采纳,获得10
11秒前
鈮宝完成签到 ,获得积分10
11秒前
WerWu完成签到,获得积分0
14秒前
14秒前
15秒前
医疗废物专用车乘客完成签到,获得积分10
17秒前
小曾发布了新的文献求助10
18秒前
wwt发布了新的文献求助10
20秒前
FashionBoy应助内向的绿海采纳,获得10
23秒前
23秒前
三泥完成签到,获得积分10
23秒前
Fn完成签到 ,获得积分10
25秒前
Momomo应助科研通管家采纳,获得10
26秒前
脑洞疼应助科研通管家采纳,获得30
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
Momomo应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
Momomo应助科研通管家采纳,获得10
27秒前
Momomo应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
wanci应助科研通管家采纳,获得10
27秒前
Orange应助科研通管家采纳,获得10
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得30
27秒前
27秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493621
求助须知:如何正确求助?哪些是违规求助? 4591657
关于积分的说明 14434342
捐赠科研通 4524055
什么是DOI,文献DOI怎么找? 2478579
邀请新用户注册赠送积分活动 1463596
关于科研通互助平台的介绍 1436426