Learning spatial patterns and temporal dependencies for traffic accident severity prediction: A deep learning approach

计算机科学 卷积神经网络 深度学习 数据预处理 交通事故 预处理器 数据挖掘 事故(哲学) 人工智能 机器学习 人工神经网络 特征(语言学) 运输工程 工程类 哲学 语言学 认识论
作者
Fares Alhaek,Weichao Liang,Taha M. Rajeh,Muhammad Hafeez Javed,Tianrui Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111406-111406 被引量:10
标识
DOI:10.1016/j.knosys.2024.111406
摘要

Traffic accidents have a substantial impact on human life and property, resulting in millions of injuries every year. To ensure road safety and enhance the research in this direction, it is necessary to develop methods that can efficiently predict and classify the accident severity. However, traffic accident datasets may contain a large number of features, making it challenging to extract relevant information and patterns from high-dimensional data. Moreover, traffic accidents may be influenced by multiple factors and temporal dependencies, leading to a dynamic impact of each factor on accident severity over time. To address these challenges, we propose a novel deep-learning approach for predicting traffic accident severity. Specifically, we first conduct a thorough data preprocessing step to clean the data and ensure its quality. Then, a Convolutional Neural Network (CNN) is introduced to extract spatial features and patterns from the high-dimensional data, followed by a Bidirectional Long Short-Term Memory network (BiLSTM) to capture the temporal dependencies between various factors that affect traffic accidents. We also implement attention mechanisms to weigh the importance of each feature in the prediction, thereby reducing the impact of noisy or irrelevant data. To evaluate the effectiveness of our approach, we conduct experiments on a real-world traffic accident dataset from two cities. The results demonstrate the practicality and effectiveness of our framework for traffic accident severity prediction, with potential to enhance road safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葛辉辉完成签到,获得积分10
1秒前
kangkang发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
SciGPT应助ye采纳,获得10
3秒前
乐乐应助自信晟睿采纳,获得10
3秒前
葛辉辉发布了新的文献求助10
3秒前
4秒前
Wxd0211完成签到,获得积分20
4秒前
nemo完成签到,获得积分10
5秒前
小橙子发布了新的文献求助10
5秒前
lxh2424发布了新的文献求助30
5秒前
万能图书馆应助YHL采纳,获得10
5秒前
请叫我风吹麦浪应助hu970采纳,获得10
5秒前
传统的慕儿完成签到,获得积分10
6秒前
aurora完成签到 ,获得积分10
6秒前
6秒前
领导范儿应助gyt采纳,获得10
8秒前
麦麦发布了新的文献求助10
8秒前
晴天完成签到,获得积分10
8秒前
龙歪歪完成签到 ,获得积分20
9秒前
Crush完成签到,获得积分0
9秒前
苏照杭应助kydd采纳,获得10
10秒前
英姑应助研友_8yN60L采纳,获得10
10秒前
学术蠕虫完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
中心湖小海棠完成签到,获得积分10
12秒前
Orange应助new_vision采纳,获得10
12秒前
帅气妙彤完成签到,获得积分10
12秒前
ye完成签到,获得积分20
12秒前
易伊澤完成签到,获得积分10
12秒前
不准吃烤肉完成签到,获得积分10
12秒前
13秒前
华仔应助义气绿柳采纳,获得10
14秒前
踏实的诗筠完成签到 ,获得积分10
14秒前
ye发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762