Learning spatial patterns and temporal dependencies for traffic accident severity prediction: A deep learning approach

计算机科学 卷积神经网络 深度学习 数据预处理 交通事故 预处理器 数据挖掘 事故(哲学) 人工智能 机器学习 人工神经网络 特征(语言学) 运输工程 工程类 哲学 认识论 语言学
作者
Fares Alhaek,Weichao Liang,Taha M. Rajeh,Muhammad Hafeez Javed,Tianrui Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:286: 111406-111406 被引量:10
标识
DOI:10.1016/j.knosys.2024.111406
摘要

Traffic accidents have a substantial impact on human life and property, resulting in millions of injuries every year. To ensure road safety and enhance the research in this direction, it is necessary to develop methods that can efficiently predict and classify the accident severity. However, traffic accident datasets may contain a large number of features, making it challenging to extract relevant information and patterns from high-dimensional data. Moreover, traffic accidents may be influenced by multiple factors and temporal dependencies, leading to a dynamic impact of each factor on accident severity over time. To address these challenges, we propose a novel deep-learning approach for predicting traffic accident severity. Specifically, we first conduct a thorough data preprocessing step to clean the data and ensure its quality. Then, a Convolutional Neural Network (CNN) is introduced to extract spatial features and patterns from the high-dimensional data, followed by a Bidirectional Long Short-Term Memory network (BiLSTM) to capture the temporal dependencies between various factors that affect traffic accidents. We also implement attention mechanisms to weigh the importance of each feature in the prediction, thereby reducing the impact of noisy or irrelevant data. To evaluate the effectiveness of our approach, we conduct experiments on a real-world traffic accident dataset from two cities. The results demonstrate the practicality and effectiveness of our framework for traffic accident severity prediction, with potential to enhance road safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴彦祖完成签到,获得积分10
刚刚
鱼香rose盖饭完成签到,获得积分10
1秒前
共享精神应助Ning采纳,获得10
1秒前
酷波er应助受伤雁荷采纳,获得10
2秒前
Lucas应助health采纳,获得10
2秒前
满意的龙猫完成签到,获得积分20
3秒前
wuce发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
天空完成签到,获得积分10
6秒前
李笑完成签到,获得积分10
7秒前
Ariel发布了新的文献求助10
8秒前
9秒前
Ning完成签到,获得积分10
10秒前
竹筏过海应助Steven采纳,获得30
11秒前
11秒前
丹曦发布了新的文献求助10
11秒前
进击的研狗完成签到 ,获得积分10
11秒前
JamesPei应助小高采纳,获得10
12秒前
燕一刀发布了新的文献求助10
13秒前
Mistletoe完成签到 ,获得积分10
13秒前
星辰大海应助liuss采纳,获得10
13秒前
14秒前
14秒前
15秒前
XinTKW完成签到,获得积分10
15秒前
16秒前
18秒前
Jieh发布了新的文献求助10
18秒前
18秒前
蓉蓉完成签到,获得积分10
18秒前
18秒前
XinTKW发布了新的文献求助10
19秒前
Amazing_Grace发布了新的文献求助30
19秒前
Eliauk发布了新的文献求助30
21秒前
22秒前
kx完成签到,获得积分10
22秒前
大咸鱼发布了新的文献求助100
22秒前
梓桐完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629