Learning spatial patterns and temporal dependencies for traffic accident severity prediction: A deep learning approach

计算机科学 卷积神经网络 深度学习 数据预处理 交通事故 预处理器 数据挖掘 事故(哲学) 人工智能 机器学习 人工神经网络 特征(语言学) 运输工程 工程类 哲学 语言学 认识论
作者
Fares Alhaek,Weichao Liang,Taha M. Rajeh,Muhammad Hafeez Javed,Tianrui Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111406-111406 被引量:10
标识
DOI:10.1016/j.knosys.2024.111406
摘要

Traffic accidents have a substantial impact on human life and property, resulting in millions of injuries every year. To ensure road safety and enhance the research in this direction, it is necessary to develop methods that can efficiently predict and classify the accident severity. However, traffic accident datasets may contain a large number of features, making it challenging to extract relevant information and patterns from high-dimensional data. Moreover, traffic accidents may be influenced by multiple factors and temporal dependencies, leading to a dynamic impact of each factor on accident severity over time. To address these challenges, we propose a novel deep-learning approach for predicting traffic accident severity. Specifically, we first conduct a thorough data preprocessing step to clean the data and ensure its quality. Then, a Convolutional Neural Network (CNN) is introduced to extract spatial features and patterns from the high-dimensional data, followed by a Bidirectional Long Short-Term Memory network (BiLSTM) to capture the temporal dependencies between various factors that affect traffic accidents. We also implement attention mechanisms to weigh the importance of each feature in the prediction, thereby reducing the impact of noisy or irrelevant data. To evaluate the effectiveness of our approach, we conduct experiments on a real-world traffic accident dataset from two cities. The results demonstrate the practicality and effectiveness of our framework for traffic accident severity prediction, with potential to enhance road safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
biomds发布了新的文献求助10
1秒前
JasonYang举报Pf1314求助涉嫌违规
1秒前
1秒前
1秒前
1秒前
所所应助高高亦竹采纳,获得10
2秒前
2秒前
3秒前
Wangyn完成签到,获得积分10
3秒前
林曦发布了新的文献求助10
3秒前
4秒前
奶黄包发布了新的文献求助10
4秒前
JasonYang应助呐小王搞科研采纳,获得10
5秒前
Z_jx完成签到,获得积分10
5秒前
5秒前
显隐发布了新的文献求助10
6秒前
显隐发布了新的文献求助10
6秒前
显隐发布了新的文献求助10
6秒前
7秒前
司空晋鹏发布了新的文献求助10
7秒前
王兴龙发布了新的文献求助10
7秒前
Andrew完成签到,获得积分10
8秒前
茶茶发布了新的文献求助10
8秒前
顺心的筮发布了新的文献求助10
10秒前
10秒前
11秒前
宁123完成签到,获得积分10
12秒前
biomds完成签到,获得积分10
13秒前
13秒前
蛐蛐发布了新的文献求助10
14秒前
烟花应助马俊杰采纳,获得10
14秒前
小华发布了新的文献求助10
15秒前
16秒前
16秒前
科研通AI6应助刁刁采纳,获得10
16秒前
17秒前
研六六完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436097
求助须知:如何正确求助?哪些是违规求助? 4548199
关于积分的说明 14212530
捐赠科研通 4468375
什么是DOI,文献DOI怎么找? 2448993
邀请新用户注册赠送积分活动 1439942
关于科研通互助平台的介绍 1416594