Learning spatial patterns and temporal dependencies for traffic accident severity prediction: A deep learning approach

计算机科学 卷积神经网络 深度学习 数据预处理 交通事故 预处理器 数据挖掘 事故(哲学) 人工智能 机器学习 人工神经网络 特征(语言学) 运输工程 工程类 哲学 语言学 认识论
作者
Fares Alhaek,Weichao Liang,Taha M. Rajeh,Muhammad Hafeez Javed,Tianrui Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111406-111406 被引量:10
标识
DOI:10.1016/j.knosys.2024.111406
摘要

Traffic accidents have a substantial impact on human life and property, resulting in millions of injuries every year. To ensure road safety and enhance the research in this direction, it is necessary to develop methods that can efficiently predict and classify the accident severity. However, traffic accident datasets may contain a large number of features, making it challenging to extract relevant information and patterns from high-dimensional data. Moreover, traffic accidents may be influenced by multiple factors and temporal dependencies, leading to a dynamic impact of each factor on accident severity over time. To address these challenges, we propose a novel deep-learning approach for predicting traffic accident severity. Specifically, we first conduct a thorough data preprocessing step to clean the data and ensure its quality. Then, a Convolutional Neural Network (CNN) is introduced to extract spatial features and patterns from the high-dimensional data, followed by a Bidirectional Long Short-Term Memory network (BiLSTM) to capture the temporal dependencies between various factors that affect traffic accidents. We also implement attention mechanisms to weigh the importance of each feature in the prediction, thereby reducing the impact of noisy or irrelevant data. To evaluate the effectiveness of our approach, we conduct experiments on a real-world traffic accident dataset from two cities. The results demonstrate the practicality and effectiveness of our framework for traffic accident severity prediction, with potential to enhance road safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助清子采纳,获得10
1秒前
WWW发布了新的文献求助30
1秒前
2秒前
遇见胡桃夹子完成签到,获得积分10
2秒前
宋牛奶的猫关注了科研通微信公众号
2秒前
胖头锦鲤发布了新的文献求助10
2秒前
hanqun1111完成签到,获得积分10
2秒前
vlots应助CreaJOE采纳,获得30
2秒前
慕青应助游悠悠采纳,获得10
2秒前
星辰大海应助vegetable采纳,获得10
3秒前
科研通AI6应助DORAAA采纳,获得10
3秒前
4秒前
jyh发布了新的文献求助10
4秒前
浮游应助guihai采纳,获得10
5秒前
大气伯云发布了新的文献求助10
7秒前
lw发布了新的文献求助10
9秒前
9秒前
思源应助淡定蜗牛采纳,获得10
10秒前
脑洞疼应助睡不醒的xx采纳,获得10
10秒前
科研通AI6应助yyy采纳,获得30
11秒前
阿氏之光完成签到,获得积分10
11秒前
单薄黑米发布了新的文献求助30
12秒前
游悠悠发布了新的文献求助10
12秒前
花影移完成签到,获得积分10
12秒前
无极微光应助ZZZ采纳,获得20
13秒前
15秒前
有志不在年糕完成签到,获得积分10
16秒前
老北京发布了新的文献求助10
17秒前
lw完成签到,获得积分20
18秒前
morlison完成签到,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
21秒前
文静冷梅完成签到,获得积分10
21秒前
21秒前
帅玉玉发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997