GLS–MIFT: A modality invariant feature transform with global-to-local searching

人工智能 模式识别(心理学) 计算机科学 规范化(社会学) 直方图 特征向量 尺度不变特征变换 特征(语言学) 计算机视觉 特征提取 图像(数学) 人类学 语言学 哲学 社会学
作者
Zhongli Fan,Yingdong Pi,Mi Wang,Yifei Kang,Kai Tan
出处
期刊:Information Fusion [Elsevier]
卷期号:105: 102252-102252 被引量:5
标识
DOI:10.1016/j.inffus.2024.102252
摘要

Accurate image matching is the basis for many information fusion-related applications. Conventional methods fail when handling multimodal image pairs with severe nonlinear radiation distortion (NRD) and geometric transformations. To address this problem, we present an effective method, termed modality-invariant feature transform with global-to-local searching (GLS-MIFT). First, we addressed scale changes by constructing the image scale space. Then, we obtained multi-scale, multi-orientation filtering results based on first-order Gaussian steerable filters to exploit their robustness to NRD. Next, we introduced a feature response aggregation model to synthesize the filtering results to generate a feature map, and used it to detect highly repeatable features. Additionally, we designed an adaptive partitioning descriptor to achieve rotation-invariant feature description, involving the following six steps: generation of statistical histograms of multi-orientation filtering values, synthesis of histograms on multiple scales, estimation and updating of the primary direction, determination of the sampling direction, normalization of the feature vector in sub-regions, and finally, obtaining the complete description vector. A convolutional image grouping strategy was used to enhance the rotational invariance of the method. We developed a new feature matcher based on the GLS strategy. Guided by the results of global searching stage, the local searching stage further improved the matching accuracy and reliability of the results. Our experimental results confirmed that GLS-MIFT achieved high-quality matching for a large-scale dataset of 1110 image pairs, with various multimodal image types from the fields of computer vision, medicine, and remote sensing. GLS-MIFT outperformed state-of-the-art methods including SIFT, RIFT, HOWP, OFM, MatchFormer, SemLA and GIFT in qualitative and quantitative evaluations. Our implementation and datasets are available at: https://github.com/Zhongli-Fan/GLS-MIFT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kaww发布了新的文献求助10
刚刚
思源应助恶恶么v采纳,获得10
刚刚
自然紫山发布了新的文献求助10
刚刚
刚刚
hugoidea发布了新的文献求助10
1秒前
wjm完成签到 ,获得积分10
1秒前
英喆完成签到 ,获得积分10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
HEIKU应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
2秒前
2秒前
azure完成签到,获得积分10
2秒前
子非我完成签到,获得积分10
2秒前
WTTTTTFFFFFF完成签到,获得积分10
3秒前
Ginny完成签到,获得积分20
3秒前
纪鹏飞发布了新的文献求助10
3秒前
畅快芝麻完成签到,获得积分10
3秒前
不见木棉完成签到,获得积分10
4秒前
tt完成签到,获得积分10
4秒前
Orange应助曹小仙男采纳,获得10
4秒前
4秒前
小栩完成签到 ,获得积分10
4秒前
斯文的寒风完成签到,获得积分10
4秒前
害怕的小懒虫完成签到,获得积分10
6秒前
xiaoyan完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
1nv1关注了科研通微信公众号
6秒前
科研通AI2S应助王wangWANG采纳,获得10
6秒前
尊敬惜雪发布了新的文献求助30
6秒前
9377完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3581022
求助须知:如何正确求助?哪些是违规求助? 3150661
关于积分的说明 9483675
捐赠科研通 2852321
什么是DOI,文献DOI怎么找? 1568107
邀请新用户注册赠送积分活动 734388
科研通“疑难数据库(出版商)”最低求助积分说明 720670