Visual Question Answering System for Skeletal Images Based on Feature Extraction Using Faster RCNN and Kai-Bi-LSTM Techniques

计算机科学 特征提取 人工智能 答疑 背景(考古学) 特征(语言学) 医疗保健 机器学习 语言学 经济增长 生物 哲学 古生物学 经济
作者
Y. I. Jinesh Melvin,Sushopti Gawade,Mukesh Shrimali
出处
期刊:Communications in computer and information science 卷期号:: 87-101
标识
DOI:10.1007/978-3-031-49454-3_6
摘要

The human life cycle is becoming more intelligent in the present era of technology, and it is expanding quickly in many areas, particularly in healthcare. In The HealthCare industry, we can see lots of significant transformation with the help of different cutting-edge technologies such as telemedicine, electronic medical records, drone technology, digital tools, and Artificial Intelligence. The main goals of AI are to complement medical expertise and enhance patient interaction. Most of the patients may not be aware of their health while revealing imaginary reports. Answering questions from visual reports is very challenging for doctors and patients. So the design of a VQA (Visual Question Answering) system for skeletal images based on feature extraction methods comes into play for the Healthcare realm to solve the complex problems against the visual images for users’ queries. In fact, it is a challenging task as it constrains the interaction and complementation of both image feature extraction and text feature extraction. This VQA system that can comprehend medical images may also aid in clinical decision-making, clinical education, and patient health literacy. Clinical questions are more challenging, but due to the importance of health and safety, answers must be highly accurate. Different techniques were used in this design to extract and categorize the textual and visual data. Faster R-CNN and Kai-Bi-LSTM are the design models for feature extraction that are suggested here. Deep Conversational neural networks are used in image feature extraction to find things. In order to combine past and feature context information, the BiLSTM neural network is made up of LSTM units that function in both directions. In order to forecast precise responses for given users’ inquiries for the image that they placed into the system, we combine the two methodologies mentioned above and classify.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
CodeCraft应助缥缈的铅笔采纳,获得10
4秒前
可爱的函函应助爱吃西瓜采纳,获得10
7秒前
7秒前
唯有发布了新的文献求助10
7秒前
时光如梭发布了新的文献求助10
8秒前
heart发布了新的文献求助10
9秒前
9秒前
我是大兴完成签到,获得积分10
9秒前
10秒前
10秒前
丘比特应助六点一横采纳,获得10
10秒前
10秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
11秒前
华仔应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
华仔应助科研通管家采纳,获得10
11秒前
愤怒的河虾完成签到,获得积分10
12秒前
12秒前
隐形曼青应助junjie采纳,获得10
13秒前
15秒前
hql_sdu完成签到,获得积分10
16秒前
16秒前
Henry应助samuealndjw采纳,获得200
16秒前
调研昵称发布了新的文献求助10
19秒前
叶白山发布了新的文献求助10
19秒前
打打应助刘斌采纳,获得10
19秒前
苏书白应助火星上的无声采纳,获得10
19秒前
111完成签到,获得积分10
20秒前
爆米花应助风中听枫采纳,获得10
21秒前
科研通AI2S应助...采纳,获得10
21秒前
英俊的铭应助活力思枫采纳,获得10
22秒前
优雅苑睐完成签到,获得积分10
23秒前
25秒前
27秒前
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149204
求助须知:如何正确求助?哪些是违规求助? 2800294
关于积分的说明 7839427
捐赠科研通 2457845
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628436
版权声明 601706