已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SCCD: A slicing algorithm for detecting geomorphic changes on topographically complex areas based on 3D point clouds

切片 遥感 点云 地质学 计算机科学 点(几何) 人工智能 计算机图形学(图像) 几何学 数学
作者
Xin Yang,Jinfei Hu,Pengfei Li,Chendi Gao,Hooman Latifi,Xiao Bai,Jingqing Gao,Tianmin Dang,Fuquan Tang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:303: 114022-114022
标识
DOI:10.1016/j.rse.2024.114022
摘要

Three-dimensional (3D) point clouds are widely used for geomorphic change detection. However, the lack of efficient change-detection algorithms for complex terrain limits the use of 3D point clouds in area-wide morphological change studies. In this study, a complex terrain development process was simulated on a natural slope in the hilly and gully Loess Plateau in China using 28 runoff scouring experiments conducted in two plots. Highly precise point clouds were obtained using terrestrial laser scanning (TLS) before and after each experiment. A slice contraction change detection (SCCD) algorithm was developed based on slicing, Laplacian-based contraction, and differential principles for detecting geomorphic and volumetric changes on complex terrain, and the level of detection (LoD) was derived with respect to that of the multiscale model to model the cloud comparison (M3C2) algorithm. The accuracy of SCCD was compared with that of the 3D-M3C2 algorithm (i.e., a 3D volumetric change calculation algorithm based on M3C2) and the digital elevation model (DEM) of difference (DoD) algorithm based on the measured sediment yield from the plots. The comparison was performed also under different point cloud densities and morphologies. Results showed the following: (1) The precisions of SCCD and 3D-M3C2 were comparable and considerably higher than that of DoD. The mean relative errors of SCCD, 3D-M3C2, and DoD for the two plots were 13.32% and 10.37%, 10.07% and 10.84%, and 35.30% and 27.23%, respectively. The relative error fluctuations of the three algorithms for the individual experiments followed the sequence of DoD (standard deviation (std.): 10.18) > 3D-M3C2 (std.: 8.29) > SCCD (std.: 5.79). (2) The sensitivity to point cloud density changes followed the sequence of 3D-M3C2 > SCCD > DoD as the point cloud density varied between 10,000 and 1000 points m−2. The mean relative errors of 3D-M3C2, SCCD, and DoD for the two plots were 10.07–18.59% and 10.84–13.62%, 13.32–16.83% and 10.37–15.50%, and 35.30–38.33% and 26.52–27.26%, respectively. (3) The accuracy of 3D-M3C2 decreased significantly (p < 0.05), whereas those of SCCD and DoD either changed insignificantly (p > 0.05) or increased significantly for substantial morphologic changes. As the experiments progressed, the relative errors of 3D-M3C2, SCCD, and DoD for the two plots were 10.87–93.77% and 30.76–167.89%, 20.04–9.95% and 5.54–7.96%, and 42.49–11.94% and 3.89–4.96%, respectively. Overall, the SCCD algorithm provides a reliable means of conducting geomorphic change detection in complex terrain and thus facilitates future studies on detecting and characterizing land surface processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮元珊发布了新的文献求助10
2秒前
4秒前
清欢渡Hertz完成签到 ,获得积分10
5秒前
5秒前
Mayily完成签到,获得积分10
7秒前
7秒前
幸运的姜姜完成签到 ,获得积分10
8秒前
参也完成签到 ,获得积分10
8秒前
9秒前
hx完成签到 ,获得积分10
10秒前
yao发布了新的文献求助10
11秒前
卷毛维安发布了新的文献求助10
11秒前
汉堡包应助Antarxtica采纳,获得10
12秒前
Bio发布了新的文献求助30
12秒前
李小伟完成签到,获得积分10
13秒前
JamesPei应助11采纳,获得10
14秒前
田様应助Yolo采纳,获得10
14秒前
李小伟发布了新的文献求助10
16秒前
无花果应助yao采纳,获得10
17秒前
17秒前
上官若男应助饶渔采纳,获得10
18秒前
andrele应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
Bio完成签到,获得积分10
20秒前
wadiu发布了新的文献求助30
21秒前
22秒前
24秒前
jiaojiao完成签到,获得积分10
24秒前
25秒前
百宝完成签到,获得积分10
26秒前
魏建威发布了新的文献求助100
26秒前
小z发布了新的文献求助10
26秒前
28秒前
CodeCraft应助小z采纳,获得10
30秒前
专一的摩托车完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606479
求助须知:如何正确求助?哪些是违规求助? 4690888
关于积分的说明 14866406
捐赠科研通 4705982
什么是DOI,文献DOI怎么找? 2542717
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276