亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SCCD: A slicing algorithm for detecting geomorphic changes on topographically complex areas based on 3D point clouds

切片 遥感 点云 地质学 计算机科学 点(几何) 人工智能 计算机图形学(图像) 几何学 数学
作者
Xin Yang,Jinfei Hu,Pengfei Li,Chendi Gao,Hooman Latifi,Xiao Bai,Jingqing Gao,Tianmin Dang,Fuquan Tang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:303: 114022-114022
标识
DOI:10.1016/j.rse.2024.114022
摘要

Three-dimensional (3D) point clouds are widely used for geomorphic change detection. However, the lack of efficient change-detection algorithms for complex terrain limits the use of 3D point clouds in area-wide morphological change studies. In this study, a complex terrain development process was simulated on a natural slope in the hilly and gully Loess Plateau in China using 28 runoff scouring experiments conducted in two plots. Highly precise point clouds were obtained using terrestrial laser scanning (TLS) before and after each experiment. A slice contraction change detection (SCCD) algorithm was developed based on slicing, Laplacian-based contraction, and differential principles for detecting geomorphic and volumetric changes on complex terrain, and the level of detection (LoD) was derived with respect to that of the multiscale model to model the cloud comparison (M3C2) algorithm. The accuracy of SCCD was compared with that of the 3D-M3C2 algorithm (i.e., a 3D volumetric change calculation algorithm based on M3C2) and the digital elevation model (DEM) of difference (DoD) algorithm based on the measured sediment yield from the plots. The comparison was performed also under different point cloud densities and morphologies. Results showed the following: (1) The precisions of SCCD and 3D-M3C2 were comparable and considerably higher than that of DoD. The mean relative errors of SCCD, 3D-M3C2, and DoD for the two plots were 13.32% and 10.37%, 10.07% and 10.84%, and 35.30% and 27.23%, respectively. The relative error fluctuations of the three algorithms for the individual experiments followed the sequence of DoD (standard deviation (std.): 10.18) > 3D-M3C2 (std.: 8.29) > SCCD (std.: 5.79). (2) The sensitivity to point cloud density changes followed the sequence of 3D-M3C2 > SCCD > DoD as the point cloud density varied between 10,000 and 1000 points m−2. The mean relative errors of 3D-M3C2, SCCD, and DoD for the two plots were 10.07–18.59% and 10.84–13.62%, 13.32–16.83% and 10.37–15.50%, and 35.30–38.33% and 26.52–27.26%, respectively. (3) The accuracy of 3D-M3C2 decreased significantly (p < 0.05), whereas those of SCCD and DoD either changed insignificantly (p > 0.05) or increased significantly for substantial morphologic changes. As the experiments progressed, the relative errors of 3D-M3C2, SCCD, and DoD for the two plots were 10.87–93.77% and 30.76–167.89%, 20.04–9.95% and 5.54–7.96%, and 42.49–11.94% and 3.89–4.96%, respectively. Overall, the SCCD algorithm provides a reliable means of conducting geomorphic change detection in complex terrain and thus facilitates future studies on detecting and characterizing land surface processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11112321321完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助20
16秒前
陶醉的烤鸡完成签到 ,获得积分10
24秒前
顾矜应助shimly0101xx采纳,获得10
36秒前
36秒前
40秒前
41秒前
眼睛大的松鼠完成签到,获得积分10
46秒前
猪四郎完成签到,获得积分10
51秒前
文献四面八方来完成签到,获得积分10
58秒前
哈哈哈完成签到,获得积分10
1分钟前
米线儿完成签到,获得积分10
1分钟前
一一应助liudy采纳,获得10
1分钟前
安静绯完成签到,获得积分20
1分钟前
荼黎应助李雅琪采纳,获得30
1分钟前
Yuan完成签到 ,获得积分10
1分钟前
1分钟前
shimly0101xx发布了新的文献求助10
1分钟前
1分钟前
开放道天发布了新的文献求助10
1分钟前
2分钟前
MchemG应助科研通管家采纳,获得200
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
YCCC完成签到,获得积分10
2分钟前
朴素的山蝶完成签到 ,获得积分10
3分钟前
晨云完成签到,获得积分10
3分钟前
3分钟前
耿耿完成签到,获得积分10
3分钟前
3分钟前
耿耿发布了新的文献求助10
3分钟前
3分钟前
caca完成签到,获得积分0
3分钟前
3分钟前
YCCC发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617027
求助须知:如何正确求助?哪些是违规求助? 4701416
关于积分的说明 14913541
捐赠科研通 4748450
什么是DOI,文献DOI怎么找? 2549262
邀请新用户注册赠送积分活动 1512335
关于科研通互助平台的介绍 1474080