Leveraging multimodal MRI-based radiomics analysis with diverse machine learning models to evaluate lymphovascular invasion in clinically node-negative breast cancer

人工智能 特征选择 无线电技术 逻辑回归 单变量 放射基因组学 磁共振成像 机器学习 降维 乳腺癌 医学 乳房磁振造影 淋巴血管侵犯 支持向量机 计算机科学 放射科 癌症 乳腺摄影术 多元统计 内科学 转移
作者
Yihong Jiang,Ying Zeng,Zhichao Zuo,Xiaohong Yang,Haibo Li,Yingjun Zhou,Xiaohong Fan
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (1): e23916-e23916 被引量:3
标识
DOI:10.1016/j.heliyon.2023.e23916
摘要

This study aimed to investigate and validate the effectiveness of diverse radiomics models for preoperatively differentiating lymphovascular invasion (LVI) in clinically node-negative breast cancer (BC).This study included 198 patients diagnosed with clinically node-negative bc and pathologically confirmed LVI status from January 2018-July 2023. The training dataset consisted of 138 patients, while the validation dataset included 60. Radiomics features were extracted from multimodal magnetic resonance imaging obtained from T1WI, T2WI, DCE, DWI, and ADC sequences. Dimensionality reduction and feature selection techniques were applied to the extracted features. Subsequently, machine learning approaches, including logistic regression, support vector machine, classification and regression trees, k-nearest neighbors, and gradient boosting machine models (GBM), were constructed using the radiomics features. The best-performing radiomic model was selected based on its performance using the confusion matrix. Univariate and multivariable logistic regression analyses were conducted to identify variables for developing a clinical-radiological (Clin-Rad) model. Finally, a combined model incorporating both radiomics and clinical-radiological model features was created.A total of 6195 radiomic features were extracted from multimodal magnetic resonance imaging. After applying dimensionality reduction and feature selection, seven valuable radiomics features were identified. Among the radiomics models, the GBM model demonstrated superior predictive efficiency and robustness, achieving area under the curve values (AUC) of 0.881 (0.823,0.940) and 0.820 (0.693,0.947) in the training and validation datasets, respectively. The Clin-Rad model was developed based on the peritumoral edema and DWI rim sign. In the training dataset, it achieved an AUC of 0.767 (0.681, 0.854), while in the validation dataset, it achieved an AUC of 0.734 (0.555-0.913). The combined model, which incorporated radiomics and the Clin-Rad model, showed the highest discriminatory capability. In the training dataset, it had an AUC value of 0.936 (0.892, 0.981), and in the validation dataset, it had an AUC value of 0.876 (0.757, 0.995). Additionally, decision curve analysis of the combined model revealed its optimal clinical efficacy.The combined model, integrating radiomics and clinical-radiological features, exhibited excellent performance in distinguishing LVI status. This non-invasive and efficient approach holds promise for aiding clinical decision-making in the context of clinically node-negative BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊皮大哈完成签到,获得积分10
1秒前
饶丹发布了新的文献求助10
1秒前
cuc发布了新的文献求助10
1秒前
Owen应助啊哈哈哈哈采纳,获得10
1秒前
1秒前
1秒前
2秒前
tomoe完成签到,获得积分10
2秒前
BulingQAQ发布了新的文献求助10
3秒前
坚定的海露完成签到,获得积分10
4秒前
大模型应助M95采纳,获得10
4秒前
C·麦塔芬完成签到,获得积分10
4秒前
壹yi发布了新的文献求助10
4秒前
hgfchg完成签到,获得积分10
4秒前
4秒前
4秒前
霸气的断缘完成签到,获得积分10
5秒前
5秒前
diangongjishu完成签到,获得积分10
5秒前
李健的小迷弟应助Shanshan采纳,获得10
5秒前
天真的冰淇淋完成签到,获得积分10
6秒前
零一应助期待未来的自己采纳,获得10
6秒前
6秒前
hzauhzau发布了新的文献求助10
7秒前
酷波er应助zjh采纳,获得10
7秒前
missinglotta发布了新的文献求助10
7秒前
7秒前
7秒前
cdercder应助cuc采纳,获得10
7秒前
7秒前
lcy完成签到 ,获得积分10
8秒前
英俊的铭应助zhanxiaolan采纳,获得10
8秒前
9秒前
9秒前
热情的明轩完成签到,获得积分10
9秒前
9秒前
山上的树发布了新的文献求助10
9秒前
10秒前
wanwei完成签到,获得积分10
10秒前
Arthur发布了新的文献求助10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808424
求助须知:如何正确求助?哪些是违规求助? 3353157
关于积分的说明 10363871
捐赠科研通 3069381
什么是DOI,文献DOI怎么找? 1685481
邀请新用户注册赠送积分活动 810558
科研通“疑难数据库(出版商)”最低求助积分说明 766193