An effective method for generating crystal structures based on the variational autoencoder and the diffusion model

自编码 扩散 统计物理学 数学 计算机科学 算法 应用数学 材料科学 物理 人工智能 热力学 人工神经网络
作者
Chen Chen,Jinzhou Zheng,Chaoqin Chu,Qinkun Xiao,Chaozheng He,Xi Fu
出处
期刊:Chinese Chemical Letters [Elsevier]
卷期号:: 109739-109739 被引量:7
标识
DOI:10.1016/j.cclet.2024.109739
摘要

Two dimensional (2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in optoelectronic applications. However, due to the limitation of calculation and experimental conditions, it is still a challenging task to predict new 2D BC monolayer materials. Specifically, we utilized Crystal Diffusion Variational Autoencoder (CDVAE) and pre-trained Materials Graph Neural Network with 3-Body Interactions (M3GNet) model to generate novel and stable BCP materials. Each crystal structure was treated as a high-dimensional vector, where the encoder extracted lattice information and element coordinates, mapping the high-dimensional data into a low-dimensional latent space. The decoder then reconstructed the latent representation back into the original data space. Additionally, our designed attribute predictor network combined the advantages of dilated convolutions and residual connections, effectively increasing the model's receptive field and learning capacity while maintaining relatively low parameter count and computational complexity. By progressively increasing the dilation rate, the model can capture features at different scales. We used the DFT data set of about 1600 BCP monolayer materials to train the diffusion model, and combined with the pre-trained M3GNet model to screen the best candidate structure. Finally, we used DFT calculations to confirm the stability of the candidate structure. The results show that the combination of generative deep learning model and attribute prediction model can help accelerate the discovery and research of new 2D materials, and provide effective methods for exploring the inverse design of new two-dimensional materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
66666666发布了新的文献求助20
1秒前
帅气的小兔子完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
达乐发布了新的文献求助10
4秒前
弹幕发布了新的文献求助80
4秒前
4秒前
4秒前
jessicazhong发布了新的文献求助10
5秒前
lonely完成签到,获得积分10
5秒前
tianwa关注了科研通微信公众号
5秒前
温馨完成签到,获得积分10
6秒前
6秒前
milewangzi发布了新的文献求助10
6秒前
7秒前
Owen应助PiaoGuo采纳,获得10
7秒前
图图完成签到,获得积分20
7秒前
lalala发布了新的文献求助10
8秒前
酷不哭哭完成签到,获得积分10
8秒前
wusj120发布了新的文献求助10
8秒前
8秒前
朝朝发布了新的文献求助10
8秒前
跳跃的铭发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
呼呼爱学习完成签到 ,获得积分10
11秒前
情怀应助科研不通采纳,获得10
12秒前
隐形曼青应助林先生采纳,获得10
13秒前
13秒前
科研通AI6应助one采纳,获得10
13秒前
13秒前
耶格尔发布了新的文献求助10
13秒前
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442780
求助须知:如何正确求助?哪些是违规求助? 4552892
关于积分的说明 14239536
捐赠科研通 4474264
什么是DOI,文献DOI怎么找? 2451974
邀请新用户注册赠送积分活动 1442887
关于科研通互助平台的介绍 1418632