An effective method for generating crystal structures based on the variational autoencoder and the diffusion model

自编码 扩散 统计物理学 数学 计算机科学 算法 应用数学 材料科学 物理 人工智能 热力学 人工神经网络
作者
Chen Chen,Jinzhou Zheng,Chaoqin Chu,Qinkun Xiao,Chaozheng He,Xi Fu
出处
期刊:Chinese Chemical Letters [Elsevier]
卷期号:: 109739-109739 被引量:3
标识
DOI:10.1016/j.cclet.2024.109739
摘要

Two dimensional (2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in optoelectronic applications. However, due to the limitation of calculation and experimental conditions, it is still a challenging task to predict new 2D BC monolayer materials. Specifically, we utilized Crystal Diffusion Variational Autoencoder (CDVAE) and pre-trained Materials Graph Neural Network with 3-Body Interactions (M3GNet) model to generate novel and stable BCP materials. Each crystal structure was treated as a high-dimensional vector, where the encoder extracted lattice information and element coordinates, mapping the high-dimensional data into a low-dimensional latent space. The decoder then reconstructed the latent representation back into the original data space. Additionally, our designed attribute predictor network combined the advantages of dilated convolutions and residual connections, effectively increasing the model's receptive field and learning capacity while maintaining relatively low parameter count and computational complexity. By progressively increasing the dilation rate, the model can capture features at different scales. We used the DFT data set of about 1600 BCP monolayer materials to train the diffusion model, and combined with the pre-trained M3GNet model to screen the best candidate structure. Finally, we used DFT calculations to confirm the stability of the candidate structure. The results show that the combination of generative deep learning model and attribute prediction model can help accelerate the discovery and research of new 2D materials, and provide effective methods for exploring the inverse design of new two-dimensional materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦发布了新的文献求助10
刚刚
zxk完成签到,获得积分10
刚刚
刚刚
1秒前
xjx完成签到 ,获得积分10
1秒前
酷炫大树发布了新的文献求助10
2秒前
orixero应助凶狠的盼柳采纳,获得10
2秒前
阿翼完成签到 ,获得积分10
2秒前
妮露的修狗完成签到,获得积分10
2秒前
乐园完成签到,获得积分10
2秒前
开朗满天完成签到 ,获得积分10
3秒前
3秒前
3秒前
成就缘分发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
li发布了新的文献求助10
4秒前
胡枝子发布了新的文献求助30
5秒前
季悦完成签到,获得积分10
5秒前
BaiX完成签到,获得积分10
5秒前
5秒前
顾矜应助ttssooe采纳,获得10
5秒前
6秒前
共享精神应助罗mian采纳,获得10
6秒前
亭语完成签到 ,获得积分0
7秒前
重要清涟完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
BaiX发布了新的文献求助10
8秒前
8秒前
路旁小白完成签到,获得积分10
8秒前
枫桥完成签到 ,获得积分10
8秒前
彭于晏应助zhonghbush采纳,获得10
9秒前
秦玉蓉完成签到,获得积分10
9秒前
小文cremen完成签到 ,获得积分10
10秒前
Owen应助千里采纳,获得10
11秒前
o10发布了新的文献求助10
11秒前
MADKAI发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672