An effective method for generating crystal structures based on the variational autoencoder and the diffusion model

自编码 扩散 统计物理学 数学 计算机科学 算法 应用数学 材料科学 物理 人工智能 热力学 人工神经网络
作者
Chen Chen,Jinzhou Zheng,Chaoqin Chu,Qinkun Xiao,Chaozheng He,Xi Fu
出处
期刊:Chinese Chemical Letters [Elsevier BV]
卷期号:: 109739-109739 被引量:7
标识
DOI:10.1016/j.cclet.2024.109739
摘要

Two dimensional (2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in optoelectronic applications. However, due to the limitation of calculation and experimental conditions, it is still a challenging task to predict new 2D BC monolayer materials. Specifically, we utilized Crystal Diffusion Variational Autoencoder (CDVAE) and pre-trained Materials Graph Neural Network with 3-Body Interactions (M3GNet) model to generate novel and stable BCP materials. Each crystal structure was treated as a high-dimensional vector, where the encoder extracted lattice information and element coordinates, mapping the high-dimensional data into a low-dimensional latent space. The decoder then reconstructed the latent representation back into the original data space. Additionally, our designed attribute predictor network combined the advantages of dilated convolutions and residual connections, effectively increasing the model's receptive field and learning capacity while maintaining relatively low parameter count and computational complexity. By progressively increasing the dilation rate, the model can capture features at different scales. We used the DFT data set of about 1600 BCP monolayer materials to train the diffusion model, and combined with the pre-trained M3GNet model to screen the best candidate structure. Finally, we used DFT calculations to confirm the stability of the candidate structure. The results show that the combination of generative deep learning model and attribute prediction model can help accelerate the discovery and research of new 2D materials, and provide effective methods for exploring the inverse design of new two-dimensional materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
猪猪hero发布了新的文献求助30
2秒前
王小雨发布了新的文献求助10
2秒前
wongcheng完成签到,获得积分10
2秒前
4秒前
shenghaowen完成签到,获得积分10
4秒前
情怀应助Sky采纳,获得10
4秒前
绿毛海怪完成签到 ,获得积分10
4秒前
兔BF完成签到,获得积分10
5秒前
ju龙哥发布了新的文献求助10
8秒前
从容成危发布了新的文献求助10
10秒前
仲夏夜之梦完成签到,获得积分10
12秒前
JamesPei应助sunjian采纳,获得10
12秒前
Lewis完成签到,获得积分10
12秒前
丘比特应助机智断缘采纳,获得10
13秒前
张大帅完成签到,获得积分10
13秒前
大个应助孟雯毓采纳,获得10
13秒前
月月君完成签到,获得积分10
13秒前
WangXXP发布了新的文献求助10
13秒前
ju龙哥完成签到,获得积分10
16秒前
星辰大海应助serenity采纳,获得20
16秒前
爆米花应助RC_Wang采纳,获得10
17秒前
研友完成签到,获得积分0
18秒前
Ava应助HMX采纳,获得10
19秒前
19秒前
科研小狗完成签到 ,获得积分10
19秒前
hkh发布了新的文献求助10
20秒前
20秒前
goku应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得10
23秒前
蓝天应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
24秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
斯文败类应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4557180
求助须知:如何正确求助?哪些是违规求助? 3984803
关于积分的说明 12337149
捐赠科研通 3654884
什么是DOI,文献DOI怎么找? 2013360
邀请新用户注册赠送积分活动 1048373
科研通“疑难数据库(出版商)”最低求助积分说明 936776