An effective method for generating crystal structures based on the variational autoencoder and the diffusion model

自编码 扩散 统计物理学 数学 计算机科学 算法 应用数学 材料科学 物理 人工智能 热力学 人工神经网络
作者
Chen Chen,Jinzhou Zheng,Chaoqin Chu,Qinkun Xiao,Chaozheng He,Xi Fu
出处
期刊:Chinese Chemical Letters [Elsevier BV]
卷期号:: 109739-109739 被引量:7
标识
DOI:10.1016/j.cclet.2024.109739
摘要

Two dimensional (2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in optoelectronic applications. However, due to the limitation of calculation and experimental conditions, it is still a challenging task to predict new 2D BC monolayer materials. Specifically, we utilized Crystal Diffusion Variational Autoencoder (CDVAE) and pre-trained Materials Graph Neural Network with 3-Body Interactions (M3GNet) model to generate novel and stable BCP materials. Each crystal structure was treated as a high-dimensional vector, where the encoder extracted lattice information and element coordinates, mapping the high-dimensional data into a low-dimensional latent space. The decoder then reconstructed the latent representation back into the original data space. Additionally, our designed attribute predictor network combined the advantages of dilated convolutions and residual connections, effectively increasing the model's receptive field and learning capacity while maintaining relatively low parameter count and computational complexity. By progressively increasing the dilation rate, the model can capture features at different scales. We used the DFT data set of about 1600 BCP monolayer materials to train the diffusion model, and combined with the pre-trained M3GNet model to screen the best candidate structure. Finally, we used DFT calculations to confirm the stability of the candidate structure. The results show that the combination of generative deep learning model and attribute prediction model can help accelerate the discovery and research of new 2D materials, and provide effective methods for exploring the inverse design of new two-dimensional materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达拉崩吧发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
隐形曼青应助meo采纳,获得10
2秒前
赵坤煊完成签到 ,获得积分10
2秒前
芝士发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
4秒前
Mic关闭了Mic文献求助
4秒前
4秒前
爆米花应助laity采纳,获得10
5秒前
921发布了新的文献求助10
5秒前
6秒前
李想完成签到,获得积分10
6秒前
好蓝发布了新的文献求助10
6秒前
西农梁家辉完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
eric888应助Fizz采纳,获得100
9秒前
9秒前
仁爱采蓝发布了新的文献求助30
9秒前
CodeCraft应助Wxy采纳,获得30
9秒前
香蕉觅云应助Twilight采纳,获得10
9秒前
绵绵发布了新的文献求助10
10秒前
田晟源发布了新的文献求助10
10秒前
ningning完成签到,获得积分10
11秒前
BowieHuang发布了新的文献求助200
12秒前
莫扎洋给莫扎洋的求助进行了留言
13秒前
芝士完成签到,获得积分10
13秒前
14秒前
15秒前
不安的玫瑰完成签到,获得积分10
15秒前
LYSM发布了新的文献求助10
16秒前
chanhow发布了新的文献求助10
16秒前
共享精神应助如梦如画采纳,获得10
16秒前
感性的安露应助萌小鱼采纳,获得20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263504
求助须知:如何正确求助?哪些是违规求助? 4424042
关于积分的说明 13771651
捐赠科研通 4299063
什么是DOI,文献DOI怎么找? 2358884
邀请新用户注册赠送积分活动 1355136
关于科研通互助平台的介绍 1316351