Joint Item Recommendation and Trust Prediction with Graph Neural Networks

不信任 计算机科学 杠杆(统计) 任务(项目管理) 推荐系统 社交网络(社会语言学) 社会关系 人工智能 人工神经网络 图形 社会化媒体 机器学习 情报检索 万维网 心理学 社会心理学 理论计算机科学 管理 经济 心理治疗师
作者
Gang Wang,Hanru Wang,Junqiao Gong,Jingling Ma
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:285: 111340-111340 被引量:1
标识
DOI:10.1016/j.knosys.2023.111340
摘要

Item recommendation and trust prediction are desired by users on social network platforms since they can help users find their favourite items or friends faster. Existing methods usually utilize users' social relationships to facilitate the item recommendation task and leverage users' preferences to assist the trust prediction task. While sociological researchers have shown that users' preferences and users' social relationships are not isolated but influenced by each other, there are a few studies that model these two tasks jointly. However, in these studies, the incorporation of distrust relations and the dynamic item-specific mutual influence between users' preferences and users' social relationships are ignored. In this paper, we propose a joint learning method using graph neural networks for item recommendation and trust prediction tasks, named JoRTGNN. First, users' distrust relations are incorporated along with trust relations to extract more potential user social relationships, which can benefit both the item recommendation and trust prediction tasks. In addition, a dynamic item-specific mutual influence between users' preferences and users' social relationships is highlighted with attention mechanisms for the joint learning tasks. Experiments have been conducted on the Epinions datasets, and the experimental results show a superior performance of JoRTGNN over baselines in item recommendation and trust prediction tasks, which demonstrates that item recommendation and trust prediction can be effectively improved in the process of the mutual influence between users' preferences and users' social relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaolin678完成签到,获得积分10
刚刚
刘荣圣发布了新的文献求助10
刚刚
1秒前
拾壹完成签到,获得积分10
1秒前
wanci应助寒冷的百招采纳,获得10
2秒前
2秒前
2秒前
3秒前
小二郎应助Nemo1234采纳,获得10
5秒前
假面绅士发布了新的文献求助10
6秒前
氧羊可汗完成签到,获得积分20
6秒前
8秒前
mmx发布了新的文献求助10
8秒前
Bressanone发布了新的文献求助30
11秒前
程程完成签到,获得积分10
11秒前
不配.应助FOX采纳,获得10
11秒前
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
酒吧舞男茜茜妈完成签到,获得积分10
15秒前
Michaelialzm给Michaelialzm的求助进行了留言
16秒前
jianmin完成签到,获得积分20
16秒前
SciGPT应助Czy采纳,获得10
18秒前
氧羊可汗发布了新的文献求助10
18秒前
oblivious完成签到,获得积分10
20秒前
Oceanstal发布了新的文献求助20
20秒前
20秒前
21秒前
21秒前
epitaxy完成签到,获得积分10
22秒前
高挑的紫安完成签到 ,获得积分10
22秒前
23秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082743
求助须知:如何正确求助?哪些是违规求助? 2736027
关于积分的说明 7539806
捐赠科研通 2385554
什么是DOI,文献DOI怎么找? 1264970
科研通“疑难数据库(出版商)”最低求助积分说明 612857
版权声明 597685