Joint item recommendation and trust prediction with graph neural networks

不信任 计算机科学 杠杆(统计) 任务(项目管理) 推荐系统 社交网络(社会语言学) 社会关系 人工智能 人工神经网络 图形 社会化媒体 机器学习 万维网 心理学 社会心理学 理论计算机科学 管理 经济 心理治疗师
作者
Gang Wang,Hanru Wang,Junqiao Gong,Jingling Ma
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:285: 111340-111340 被引量:2
标识
DOI:10.1016/j.knosys.2023.111340
摘要

Item recommendation and trust prediction are desired by users on social network platforms since they can help users find their favourite items or friends faster. Existing methods usually utilize users' social relationships to facilitate the item recommendation task and leverage users' preferences to assist the trust prediction task. While sociological researchers have shown that users' preferences and users' social relationships are not isolated but influenced by each other, there are a few studies that model these two tasks jointly. However, in these studies, the incorporation of distrust relations and the dynamic item-specific mutual influence between users' preferences and users' social relationships are ignored. In this paper, we propose a joint learning method using graph neural networks for item recommendation and trust prediction tasks, named JoRTGNN. First, users' distrust relations are incorporated along with trust relations to extract more potential user social relationships, which can benefit both the item recommendation and trust prediction tasks. In addition, a dynamic item-specific mutual influence between users' preferences and users' social relationships is highlighted with attention mechanisms for the joint learning tasks. Experiments have been conducted on the Epinions datasets, and the experimental results show a superior performance of JoRTGNN over baselines in item recommendation and trust prediction tasks, which demonstrates that item recommendation and trust prediction can be effectively improved in the process of the mutual influence between users' preferences and users' social relationships.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助20
1秒前
4秒前
4秒前
哈哈哈发布了新的文献求助10
4秒前
sssjjjxx发布了新的文献求助10
7秒前
慕青应助皮皮猪大王采纳,获得10
8秒前
搜集达人应助小和尚采纳,获得10
9秒前
上官若男应助PHHHH采纳,获得10
10秒前
lrq发布了新的文献求助10
10秒前
liuchuck完成签到 ,获得积分10
10秒前
酷波er应助TARS采纳,获得10
10秒前
11秒前
如意的秋白完成签到,获得积分20
11秒前
BowieHuang应助科研菜鸟采纳,获得10
11秒前
Richard发布了新的文献求助10
13秒前
13秒前
肥嘟嘟左卫门完成签到,获得积分10
14秒前
14秒前
16秒前
李开心完成签到,获得积分10
17秒前
Hhd完成签到,获得积分10
17秒前
研友_VZG7GZ应助chen采纳,获得10
18秒前
宫立辉完成签到,获得积分10
18秒前
18秒前
18秒前
18秒前
科目三应助狂暴战士采纳,获得10
20秒前
20秒前
20秒前
testmanfuxk完成签到,获得积分10
23秒前
健壮鸡翅发布了新的文献求助30
23秒前
CipherSage应助称心的猪采纳,获得10
24秒前
25秒前
26秒前
阿嘎普莱特完成签到,获得积分0
26秒前
xyx945应助sssjjjxx采纳,获得10
29秒前
30秒前
PHHHH发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594225
求助须知:如何正确求助?哪些是违规求助? 4679892
关于积分的说明 14811940
捐赠科研通 4646251
什么是DOI,文献DOI怎么找? 2534795
邀请新用户注册赠送积分活动 1502789
关于科研通互助平台的介绍 1469475