Joint item recommendation and trust prediction with graph neural networks

不信任 计算机科学 杠杆(统计) 任务(项目管理) 推荐系统 社交网络(社会语言学) 社会关系 人工智能 人工神经网络 图形 社会化媒体 机器学习 万维网 心理学 社会心理学 理论计算机科学 管理 经济 心理治疗师
作者
Gang Wang,Hanru Wang,Junqiao Gong,Jingling Ma
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:285: 111340-111340 被引量:2
标识
DOI:10.1016/j.knosys.2023.111340
摘要

Item recommendation and trust prediction are desired by users on social network platforms since they can help users find their favourite items or friends faster. Existing methods usually utilize users' social relationships to facilitate the item recommendation task and leverage users' preferences to assist the trust prediction task. While sociological researchers have shown that users' preferences and users' social relationships are not isolated but influenced by each other, there are a few studies that model these two tasks jointly. However, in these studies, the incorporation of distrust relations and the dynamic item-specific mutual influence between users' preferences and users' social relationships are ignored. In this paper, we propose a joint learning method using graph neural networks for item recommendation and trust prediction tasks, named JoRTGNN. First, users' distrust relations are incorporated along with trust relations to extract more potential user social relationships, which can benefit both the item recommendation and trust prediction tasks. In addition, a dynamic item-specific mutual influence between users' preferences and users' social relationships is highlighted with attention mechanisms for the joint learning tasks. Experiments have been conducted on the Epinions datasets, and the experimental results show a superior performance of JoRTGNN over baselines in item recommendation and trust prediction tasks, which demonstrates that item recommendation and trust prediction can be effectively improved in the process of the mutual influence between users' preferences and users' social relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定新烟完成签到,获得积分10
4秒前
单薄咖啡豆完成签到 ,获得积分10
4秒前
阿坤发布了新的文献求助10
5秒前
Owen应助科研打怪升级中采纳,获得10
6秒前
tiantian发布了新的文献求助10
7秒前
浮游应助guard采纳,获得10
8秒前
Akim应助麦片采纳,获得10
11秒前
changping应助mikasa采纳,获得10
11秒前
洼地的浮游生物完成签到,获得积分10
12秒前
lionel发布了新的文献求助10
14秒前
14秒前
15秒前
skbkbe完成签到 ,获得积分10
16秒前
烟花应助张小龙采纳,获得10
16秒前
LL完成签到 ,获得积分10
16秒前
17秒前
-Me完成签到 ,获得积分10
17秒前
18秒前
破晓星完成签到,获得积分10
19秒前
碳烤土豆发布了新的文献求助10
19秒前
20秒前
21秒前
22秒前
22秒前
zwhy完成签到,获得积分10
22秒前
雄杨完成签到,获得积分10
22秒前
23秒前
23秒前
24秒前
麦片发布了新的文献求助10
26秒前
天天快乐应助zwhy采纳,获得10
27秒前
我是老大应助刘小蕊采纳,获得10
27秒前
353851547crf完成签到,获得积分10
27秒前
等待发布了新的文献求助10
28秒前
WYH发布了新的文献求助10
28秒前
28秒前
杰杰大叔发布了新的文献求助10
29秒前
CipherSage应助想游泳的鹰采纳,获得10
29秒前
科目三应助知性的采珊采纳,获得10
29秒前
changping应助woollen2022采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312