Stochastic resonance induced weak signal enhancement in a second-order tri-stable system with single-parameter adjusting

随机共振 信号(编程语言) 背景(考古学) 噪音(视频) 计算机科学 信号处理 估计理论 信噪比(成像) 控制理论(社会学) 算法 人工智能 数字信号处理 生物 电信 计算机硬件 图像(数学) 古生物学 程序设计语言 控制(管理)
作者
Cailiang Zhang,Zhihui Lai,Zhisheng Tu,Xu‐Yun Hua,Yong Chen,Ronghua Zhu
出处
期刊:Applied Acoustics [Elsevier]
卷期号:216: 109753-109753 被引量:4
标识
DOI:10.1016/j.apacoust.2023.109753
摘要

Weak signal detection methods based on stochastic resonance (SR) have been extensively studied due to their capability to utilize noise energy for enhancing weak signals. Among various SR models, the second-order tri-stable SR models have demonstrated their superiority in weak-signal detection with better output performance compared to other SR models. To optimize the output performance of the second-order tri-stable systems, a variety of parameter optimization methods have been proposed to optimize the parameters of the system. However, these optimization methods often require to optimize multiple parameters, which leads to an increase in computational costs and reduces the real-time processing efficiency of signal processing. Such multi-parameter optimization methods cannot meet the demands for timely signal processing in the context of big data. To address this challenge, this paper proposes two single-parameter-adjusting SR models. The proposed models can attain an ideal output performance by adjusting a single parameter in the SR system. The spectral amplification as an indicator is derived to quantitatively analyze the effects of the proposed models on SR output. On this basis, the influences of the proposed models on the SR output under different potential well parameters, noise intensities, signal frequency, and damping ratio are fully investigated through numerical simulations. At last, the proposed models are employed to process an experimental signal with a weak fault feature, and the experimental results verify the feasibility of the proposed models in optimizing the SR output. The research results can guide the design of tri-stable SR models and support the application of the SR-based signal processing model in the context of big data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
jingdaitianxiang完成签到 ,获得积分10
2秒前
2秒前
zhzhzh完成签到,获得积分10
2秒前
3秒前
敏感尔珍发布了新的文献求助10
3秒前
匹诺曹完成签到,获得积分10
3秒前
路由完成签到,获得积分10
3秒前
4秒前
兰静发布了新的文献求助10
6秒前
大肥猫完成签到,获得积分10
6秒前
子车一手完成签到,获得积分10
6秒前
6秒前
6秒前
zhzhzh发布了新的文献求助30
6秒前
7秒前
8秒前
wiwin发布了新的文献求助10
9秒前
我是老大应助专注背包采纳,获得10
9秒前
ccc完成签到,获得积分10
10秒前
隐形曼青应助尤曼云采纳,获得10
11秒前
俊逸翠丝发布了新的文献求助10
11秒前
Hazel完成签到 ,获得积分10
11秒前
长心完成签到,获得积分10
11秒前
12秒前
seaya发布了新的文献求助10
12秒前
yiyi131发布了新的文献求助10
13秒前
ZhihaoYang完成签到,获得积分10
13秒前
13秒前
13秒前
hwen1998完成签到 ,获得积分10
13秒前
14秒前
Naxop完成签到,获得积分10
15秒前
Zooey旎旎完成签到,获得积分10
15秒前
ABC熊ABC发布了新的文献求助10
15秒前
Owen应助稳重的鱼采纳,获得10
16秒前
捏捏我的小短腿完成签到,获得积分10
16秒前
16秒前
一一发布了新的文献求助20
17秒前
王韩完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147773
求助须知:如何正确求助?哪些是违规求助? 2798855
关于积分的说明 7831859
捐赠科研通 2455728
什么是DOI,文献DOI怎么找? 1306927
科研通“疑难数据库(出版商)”最低求助积分说明 627945
版权声明 601587