Stochastic resonance induced weak signal enhancement in a second-order tri-stable system with single-parameter adjusting

随机共振 信号(编程语言) 背景(考古学) 噪音(视频) 计算机科学 信号处理 估计理论 信噪比(成像) 控制理论(社会学) 算法 人工智能 数字信号处理 古生物学 电信 控制(管理) 计算机硬件 图像(数学) 生物 程序设计语言
作者
Cailiang Zhang,Zhihui Lai,Zhisheng Tu,Hanqiu Liu,Yong Chen,Ronghua Zhu
出处
期刊:Applied Acoustics [Elsevier]
卷期号:216: 109753-109753 被引量:6
标识
DOI:10.1016/j.apacoust.2023.109753
摘要

Weak signal detection methods based on stochastic resonance (SR) have been extensively studied due to their capability to utilize noise energy for enhancing weak signals. Among various SR models, the second-order tri-stable SR models have demonstrated their superiority in weak-signal detection with better output performance compared to other SR models. To optimize the output performance of the second-order tri-stable systems, a variety of parameter optimization methods have been proposed to optimize the parameters of the system. However, these optimization methods often require to optimize multiple parameters, which leads to an increase in computational costs and reduces the real-time processing efficiency of signal processing. Such multi-parameter optimization methods cannot meet the demands for timely signal processing in the context of big data. To address this challenge, this paper proposes two single-parameter-adjusting SR models. The proposed models can attain an ideal output performance by adjusting a single parameter in the SR system. The spectral amplification as an indicator is derived to quantitatively analyze the effects of the proposed models on SR output. On this basis, the influences of the proposed models on the SR output under different potential well parameters, noise intensities, signal frequency, and damping ratio are fully investigated through numerical simulations. At last, the proposed models are employed to process an experimental signal with a weak fault feature, and the experimental results verify the feasibility of the proposed models in optimizing the SR output. The research results can guide the design of tri-stable SR models and support the application of the SR-based signal processing model in the context of big data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻夜香发布了新的文献求助10
刚刚
昊康好完成签到,获得积分10
刚刚
1秒前
yy完成签到,获得积分10
1秒前
2秒前
缓慢天抒完成签到 ,获得积分10
2秒前
科研通AI5应助路之遥兮采纳,获得10
2秒前
爱睡觉的亮亮完成签到,获得积分10
3秒前
圈圈发布了新的文献求助10
3秒前
顾矜应助无聊先知采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
咕咕咕完成签到,获得积分10
4秒前
经法发布了新的文献求助10
5秒前
晚亭完成签到,获得积分10
5秒前
欲望被鬼举报戚薇求助涉嫌违规
6秒前
yangyang发布了新的文献求助10
6秒前
优雅的琳发布了新的文献求助10
7秒前
时光发布了新的文献求助10
7秒前
yuki完成签到,获得积分10
7秒前
南逸然完成签到,获得积分10
7秒前
7秒前
8秒前
HongJiang发布了新的文献求助10
8秒前
8秒前
筱谭完成签到 ,获得积分10
8秒前
guanze完成签到 ,获得积分10
9秒前
zho关闭了zho文献求助
9秒前
ding应助起承转合采纳,获得10
9秒前
10秒前
蛋炒饭不加蛋完成签到,获得积分10
10秒前
酷炫素完成签到,获得积分10
10秒前
阿金发布了新的文献求助10
11秒前
Jasper应助帅气鹭洋采纳,获得10
11秒前
11秒前
明天更好发布了新的文献求助10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678