Unraveling Thermal Transport Correlated with Atomistic Structures in Amorphous Gallium Oxide via Machine Learning Combined with Experiments

材料科学 无定形固体 热的 工作(物理) 分子动力学 氧化物 纳米技术 化学物理 统计物理学 物理 热力学 计算化学 化学 结晶学 冶金
作者
Yuanbin Liu,Huili Liang,Lei Yang,Guang Yang,Hong-Ao Yang,Shuang Song,Zengxia Mei,Gábor Cśanyi,Bing Cao
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (24) 被引量:30
标识
DOI:10.1002/adma.202210873
摘要

Thermal transport properties of amorphous materials are crucial for their emerging applications in energy and electronic devices. However, understanding and controlling thermal transport in disordered materials remains an outstanding challenge, owing to the intrinsic limitations of computational techniques and the lack of physically intuitive descriptors for complex atomistic structures. Here, it is shown how combining machine-learning-based models and experimental observations can help to accurately describe realistic structures, thermal transport properties, and structure-property maps for disordered materials, which is illustrated by a practical application on gallium oxide. First, the experimental evidence is reported to demonstrate that machine-learning interatomic potentials, generated in a self-guided fashion with minimum quantum-mechanical computations, enable the accurate modeling of amorphous gallium oxide and its thermal transport properties. The atomistic simulations then reveal the microscopic changes in the short-range and medium-range order with density and elucidate how these changes can reduce localization modes and enhance coherences' contribution to heat transport. Finally, a physics-inspired structural descriptor for disordered phases is proposed, with which the underlying relationship between structures and thermal conductivities is predicted in a linear form. This work may shed light on the future accelerated exploration of thermal transport properties and mechanisms in disordered functional materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助丶呆久自然萌采纳,获得10
1秒前
1秒前
wanyanjin应助流云采纳,获得10
1秒前
心花怒放发布了新的文献求助10
2秒前
DrYang发布了新的文献求助10
2秒前
2秒前
跑在颖完成签到,获得积分20
2秒前
希望天下0贩的0应助Jackson采纳,获得10
2秒前
徐徐发布了新的文献求助10
3秒前
落花生完成签到,获得积分10
3秒前
y123完成签到 ,获得积分10
3秒前
mnm完成签到,获得积分10
3秒前
3秒前
狂野雁丝应助小张张采纳,获得10
4秒前
qwt_hello关注了科研通微信公众号
4秒前
12彡完成签到,获得积分10
4秒前
虾仁发布了新的文献求助10
5秒前
5秒前
sx发布了新的文献求助10
5秒前
5秒前
陈尹蓝完成签到 ,获得积分10
5秒前
猪猪完成签到,获得积分20
5秒前
6秒前
luoyutian完成签到,获得积分10
6秒前
Harlotte驳回了Mars应助
6秒前
欣慰硬币发布了新的文献求助30
6秒前
6秒前
Owen应助心花怒放采纳,获得10
6秒前
kingwill应助DrYang采纳,获得20
6秒前
正直冰露发布了新的文献求助10
7秒前
Jenny应助小满采纳,获得10
7秒前
kangkang发布了新的文献求助10
7秒前
7秒前
7秒前
冷傲的嵩完成签到,获得积分10
8秒前
青山完成签到,获得积分20
8秒前
8秒前
火星上的听云完成签到,获得积分10
9秒前
鲤鱼寻菡完成签到,获得积分10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762