亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Medical Image Segmentation Based on Transformer and HarDNet Structures

计算机科学 人工智能 分割 图像分割 尺度空间分割 基于分割的对象分类 编码器 计算机视觉 特征(语言学) 模式识别(心理学) 操作系统 语言学 哲学
作者
Tongping Shen,Huanqing Xu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 16621-16630 被引量:19
标识
DOI:10.1109/access.2023.3244197
摘要

Medical image segmentation is a crucial way to assist doctors in the accurate diagnosis of diseases. However, the accuracy of medical image segmentation needs further improvement due to the problems of many noisy medical images and the high similarity between background and target regions. The current mainstream image segmentation networks, such as TransUnet, have achieved accurate image segmentation. Still, the encoders of such segmentation networks do not consider the local connection between adjacent chunks and lack the interaction of inter-channel information during the upsampling of the decoder. To address the above problems, this paper proposed a dual-encoder image segmentation network, including HarDNet68 and Transformer branch, which can extract the local features and global feature information of the input image, allowing the segmentation network to learn more image information, thus improving the effectiveness and accuracy of medical segmentation. In this paper, to realize the fusion of image feature information of different dimensions in two stages of encoding and decoding, we propose a feature adaptation fusion module to fuse the channel information of multi-level features and realize the information interaction between channels, and then improve the segmentation network accuracy. The experimental results on CVC-ClinicDB, ETIS-Larib, and COVID-19 CT datasets show that the proposed model performs better in four evaluation metrics, Dice, Iou, Prec, and Sens, and achieves better segmentation results in both internal filling and edge prediction of medical images. Accurate medical image segmentation can assist doctors in making a critical diagnosis of cancerous regions in advance, ensure cancer patients receive timely targeted treatment, and improve their survival quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助魏誉采纳,获得10
1秒前
jj完成签到 ,获得积分10
15秒前
哇呀呀完成签到 ,获得积分10
17秒前
彳亍完成签到 ,获得积分10
24秒前
光亮如彤完成签到,获得积分10
26秒前
HU完成签到 ,获得积分10
27秒前
31秒前
35秒前
40秒前
47秒前
cadet发布了新的文献求助10
48秒前
Akim应助wang5945采纳,获得10
51秒前
52秒前
小马甲应助老孟采纳,获得10
54秒前
开心的小松鼠完成签到,获得积分10
54秒前
58秒前
cadet完成签到,获得积分10
1分钟前
学习多快乐完成签到 ,获得积分10
1分钟前
斯文败类应助路宝采纳,获得10
1分钟前
FashionBoy应助路宝采纳,获得10
1分钟前
1分钟前
John完成签到,获得积分10
1分钟前
英姑应助wang5945采纳,获得10
1分钟前
老孟发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
wang发布了新的文献求助10
1分钟前
1分钟前
1分钟前
核小蟀发布了新的文献求助20
1分钟前
平常的羊完成签到 ,获得积分10
1分钟前
mahehivebv111完成签到,获得积分10
1分钟前
清欢渡Hertz完成签到 ,获得积分10
1分钟前
1分钟前
dfhjjj完成签到,获得积分10
1分钟前
2分钟前
efoge发布了新的文献求助10
2分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056425
求助须知:如何正确求助?哪些是违规求助? 2713046
关于积分的说明 7434315
捐赠科研通 2357998
什么是DOI,文献DOI怎么找? 1249197
科研通“疑难数据库(出版商)”最低求助积分说明 606972
版权声明 596195