An augmented Snake Optimizer for diseases and COVID-19 diagnosis

2019年冠状病毒病(COVID-19) 计算机科学 2019-20冠状病毒爆发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 人工智能 病毒学 医学 爆发 传染病(医学专业) 疾病 病理
作者
Ruba Abu Khurma,Dheeb Albashish,Malik Braik,Abdullah Alzaqebah,Ashwaq Qasem,Omar Adwan
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104718-104718 被引量:24
标识
DOI:10.1016/j.bspc.2023.104718
摘要

Feature Selection (FS) techniques extract the most recognizable features for improving the performance of classification methods for medical applications. In this paper, two intelligent wrapper FS approaches based on a new metaheuristic algorithm named the Snake Optimizer (SO) are introduced. The binary SO, called BSO, is built based on an S-shape transform function to handle the binary discrete values in the FS domain. To improve the exploration of the search space by BSO, three evolutionary crossover operators (i.e., one-point crossover, two-point crossover, and uniform crossover) are incorporated and controlled by a switch probability. The two newly developed FS algorithms, BSO and BSO-CV, are implemented and assessed on a real-world COVID-19 dataset and 23 disease benchmark datasets. According to the experimental results, the improved BSO-CV significantly outperformed the standard BSO in terms of accuracy and running time in 17 datasets. Furthermore, it shrinks the COVID-19 dataset's dimension by 89% as opposed to the BSO's 79%. Moreover, the adopted operator on BSO-CV improved the balance between exploitation and exploration capabilities in the standard BSO, particularly in searching and converging toward optimal solutions. The BSO-CV was compared against the most recent wrapper-based FS methods; namely, the hyperlearning binary dragonfly algorithm (HLBDA), the binary moth flame optimization with Lévy flight (LBMFO-V3), the coronavirus herd immunity optimizer with greedy crossover operator (CHIO-GC), as well as four filter methods with an accuracy of more than 90% in most benchmark datasets. These optimistic results reveal the great potential of BSO-CV in reliably searching the feature space.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助MHY采纳,获得10
刚刚
1秒前
酷炫怀莲完成签到,获得积分10
2秒前
ztt完成签到,获得积分10
2秒前
希望天下0贩的0应助Felix采纳,获得30
3秒前
共享精神应助yyhatb采纳,获得10
4秒前
赘婿应助研友_89eAm8采纳,获得10
4秒前
奋斗的桐发布了新的文献求助10
4秒前
5秒前
皇帝的床帘应助宓函采纳,获得10
6秒前
Sun发布了新的文献求助20
6秒前
7秒前
典雅涵瑶发布了新的文献求助10
7秒前
yee发布了新的文献求助10
7秒前
笑点低的幼翠完成签到,获得积分10
7秒前
7秒前
sanxing发布了新的文献求助10
8秒前
淡定落雁发布了新的文献求助30
9秒前
9秒前
fifteen发布了新的文献求助10
10秒前
11秒前
东擎完成签到 ,获得积分10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
甜甜玫瑰应助科研通管家采纳,获得10
11秒前
12秒前
大个应助科研通管家采纳,获得10
12秒前
牛牛牛应助科研通管家采纳,获得20
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
若E18应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
tkdzjr12345发布了新的文献求助10
12秒前
今后应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
甜甜玫瑰应助科研通管家采纳,获得10
12秒前
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
12秒前
shanage应助科研通管家采纳,获得10
12秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187