已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Computed Tomography Radiomics to Differentiate Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma

医学 接收机工作特性 肝细胞癌 组内相关 放射科 置信区间 逻辑回归 肝内胆管癌 经导管动脉化疗栓塞 特征选择 核医学 人工智能 内科学 计算机科学 临床心理学 心理测量学
作者
Scherwin Mahmoudi,Simon Bernatz,Jörg Ackermann,Vitali Koch,Daniel Pinto dos Santos,Leon D. Grünewald,Ibrahim Yel,Simon S. Martin,Jan‐Erik Scholtz,Angelika Stehle,Dirk Walter,Stefan Zeuzem,Peter J. Wild,Thomas J. Vogl,Maximilian N. Kinzler
出处
期刊:Clinical Oncology [Elsevier]
卷期号:35 (5): e312-e318 被引量:7
标识
DOI:10.1016/j.clon.2023.01.018
摘要

Aims Intrahepatic cholangiocarcinoma (iCCA) and hepatocellular carcinoma (HCC) differ in prognosis and treatment. We aimed to non-invasively differentiate iCCA and HCC by means of radiomics extracted from contrast-enhanced standard-of-care computed tomography (CT). Materials and methods In total, 94 patients (male, n = 68, mean age 63.3 ± 12.4 years) with histologically confirmed iCCA (n = 47) or HCC (n = 47) who underwent contrast-enhanced abdominal CT between August 2014 and November 2021 were retrospectively included. The enhancing tumour border was manually segmented in a clinically feasible way by defining three three-dimensional volumes of interest per tumour. Radiomics features were extracted. Intraclass correlation analysis and Pearson metrics were used to stratify robust and non-redundant features with further feature reduction by LASSO (least absolute shrinkage and selection operator). Independent training and testing datasets were used to build four different machine learning models. Performance metrics and feature importance values were computed to increase the models' interpretability. Results The patient population was split into 65 patients for training (iCCA, n = 32) and 29 patients for testing (iCCA, n = 15). A final combined feature set of three radiomics features and the clinical features age and sex revealed a top test model performance of receiver operating characteristic (ROC) area under the curve (AUC) = 0.82 (95% confidence interval =0.66–0.98; train ROC AUC = 0.82) using a logistic regression classifier. The model was well calibrated, and the Youden J Index suggested an optimal cut-off of 0.501 to discriminate between iCCA and HCC with a sensitivity of 0.733 and a specificity of 0.857. Conclusions Radiomics-based imaging biomarkers can potentially help to non-invasively discriminate between iCCA and HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大白包子李完成签到,获得积分10
1秒前
抠鼻公主完成签到 ,获得积分10
4秒前
传奇3应助景Q同学采纳,获得10
5秒前
在九月完成签到 ,获得积分10
5秒前
Nick完成签到 ,获得积分10
6秒前
9秒前
10秒前
大个应助zm采纳,获得10
12秒前
害羞龙猫完成签到 ,获得积分10
12秒前
英姑应助猫七采纳,获得30
12秒前
上官若男应助猫七采纳,获得10
12秒前
田様应助猫七采纳,获得10
12秒前
某竖特别菜完成签到 ,获得积分10
13秒前
14秒前
坦率的乐蕊完成签到 ,获得积分10
14秒前
开放素完成签到 ,获得积分10
14秒前
LMFY发布了新的文献求助30
15秒前
asdfqwer完成签到 ,获得积分0
18秒前
能干的阿拉蕾完成签到 ,获得积分10
19秒前
luochen完成签到,获得积分10
20秒前
过分动真完成签到 ,获得积分10
22秒前
顾矜应助玉玊采纳,获得10
22秒前
重要的哈密瓜完成签到 ,获得积分10
25秒前
26秒前
三金完成签到,获得积分20
27秒前
高贵书南完成签到,获得积分10
28秒前
旺仔牛奶发布了新的文献求助10
28秒前
28秒前
暴躁的帽子完成签到,获得积分10
28秒前
xona完成签到,获得积分10
28秒前
重要的哈密瓜关注了科研通微信公众号
29秒前
Lighters发布了新的文献求助10
30秒前
31秒前
肉肉完成签到 ,获得积分10
31秒前
31秒前
LMFY完成签到 ,获得积分20
34秒前
玉玊发布了新的文献求助10
34秒前
AZN完成签到 ,获得积分10
34秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392752
求助须知:如何正确求助?哪些是违规求助? 3003290
关于积分的说明 8808599
捐赠科研通 2690063
什么是DOI,文献DOI怎么找? 1473431
科研通“疑难数据库(出版商)”最低求助积分说明 681571
邀请新用户注册赠送积分活动 674477