单变量
公司债券
超参数
计量经济学
分位数
债券
选择(遗传算法)
分位数回归
数学
计算机科学
统计
机器学习
经济
财务
多元统计
作者
Tingting Cheng,Shan Jiang,Albert Bo Zhao,Jia Zhang
标识
DOI:10.1016/j.frl.2023.103727
摘要
We investigate the performances of two methods of complete subset averaging—complete subset linear averaging (CSLA) and complete subset quantile averaging (CSQA)—on the problem of corporate bond return prediction. We find that the two methods are overwhelmingly better than univariate linear regression and simple forecast combination. Meanwhile, CSQA is better than CSLA in most cases. For practical implementation, we also provide discussions on the selection of the hyperparameter k when applying these complete subset averaging methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI