气凝胶
木质素
废水
铀
废物管理
化学
纤维素
溶解度
核化学
化学工程
材料科学
有机化学
纳米技术
工程类
冶金
作者
Gaojie Jiao,Jiliang Ma,Jinguang Hu,Xing Wang,Run‐Cang Sun
标识
DOI:10.1016/j.jhazmat.2023.130988
摘要
Developing the lignin-based functional materials for uranium uptake is extremely attractive, but challenging due to the complex structure, poor solubility and reactivity of lignin. Herein, a novel phosphorylated lignin (LP)/sodium alginate/ carboxylated carbon nanotube (CCNT) composite aerogel ([email protected]) with vertically oriented lamellar configuration was created for efficient uranium uptake from acidic wastewater. The successful phosphorylation of lignin by a facile solvent-free mechanochemical method achieved more than six-times enhancement in U(VI) uptake capacity of lignin. While, the incorporation of CCNT not only increased the specific surface area of [email protected], but also improved its mechanical strength as a reinforcing phase. More importantly, the synergies between LP and CCNT components endowed [email protected] with an excellent photothermal performance, resulting in a local heat environment on [email protected] and further boosting the U(VI) uptake. Consequently, the light irradiated [email protected] exhibited an ultrahigh U(VI) uptake capacity (1308.87 mg g−1), 61.26% higher than that under dark condition, excellent adsorptive selectivity and reusability. After exposure to 10 L of simulated wastewater, above 98.21% of U(VI) ions could be rapidly captured by [email protected] under light irradiation, revealing the tremendous feasibility in industrial application. The electrostatic attraction and coordination interaction were considered as the main mechanism for U(VI) uptake.
科研通智能强力驱动
Strongly Powered by AbleSci AI