Weak Compound Fault Identification of Gearboxes Based on Improved Symplectic Geometric Mode Decomposition and Optimized Cyclic Kurtosis Deconvolution

峰度 反褶积 辛几何 鉴定(生物学) 分解 模式(计算机接口) 计算机科学 断层(地质) 算法 模式识别(心理学) 数学 人工智能 纯数学 统计 地质学 化学 地震学 操作系统 生物 有机化学 植物
作者
Kaihua Li,Hong Jiang,Xiangfeng Zhang,Zhen Lei,Yu Bai
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad8c72
摘要

Abstract Given the complex and harsh operating conditions of gear transmission systems, gearboxes are prone to compound faults. These faults, involving multiple types, often couple together, causing the weak fault pulse characteristics to be entirely masked by strong environmental noise. This significantly complicates the extraction of relevant fault information from the gearbox. To address these issues, this paper proposes a method for extracting compound fault features based on improved symplectic geometric mode decomposition (SGMD) and optimized cyclic bispectrum deconvolution (CYCBD). Firstly, considering the periodic impact characteristics of different fault types, morphological envelope cyclic bispectrum is proposed to cluster the initial components obtained from SGMD decomposition, thereby adaptively separating different fault features contained in the compound fault signals. An adaptive filter length search strategy is subsequently introduced to optimize the CYCBD by deconvolving each initial fault component, thereby eliminating the interference caused by complex transmission paths and substantial environmental noise, which, in turn, enhances weak periodic fault pulses. Following this, the enhanced signals are subjected to envelope demodulation to extract fault characteristic frequencies, enabling the identification of various types of faults. The effectiveness and feasibility of the proposed method are demonstrated through both simulation signals and actual experimental data related to gearbox compound faults. Compared with existing methods, the proposed method demonstrates superior performance in identifying weak compound faults under strong environmental noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袖玫瑰发布了新的文献求助10
1秒前
香蕉诗蕊举报懒羊羊求助涉嫌违规
4秒前
茗泠发布了新的文献求助10
4秒前
向往生活发布了新的文献求助10
4秒前
连鹰完成签到,获得积分10
5秒前
杰瑞发布了新的文献求助10
5秒前
笨笨人龙完成签到 ,获得积分10
5秒前
FashionBoy应助大宝君采纳,获得30
5秒前
亮亮发布了新的文献求助10
10秒前
杜本内完成签到,获得积分10
11秒前
11秒前
玄冰发布了新的文献求助20
12秒前
12秒前
阿童木完成签到,获得积分10
13秒前
江边鸟完成签到 ,获得积分10
15秒前
辛勤的博涛完成签到,获得积分10
15秒前
liu发布了新的文献求助10
16秒前
jin发布了新的文献求助10
17秒前
17秒前
顾矜应助CGN采纳,获得10
19秒前
Miku完成签到,获得积分10
19秒前
awxefc完成签到,获得积分10
20秒前
善学以致用应助笑点低靖采纳,获得10
21秒前
23秒前
pork0001完成签到,获得积分20
24秒前
Mia发布了新的文献求助10
24秒前
liu完成签到,获得积分10
25秒前
26秒前
kk发布了新的文献求助10
27秒前
pork0001发布了新的文献求助10
27秒前
27秒前
27秒前
乐乐应助大宝君采纳,获得30
28秒前
文森特的向日葵完成签到,获得积分10
29秒前
spc68应助追寻筮采纳,获得10
30秒前
蜗牛发布了新的文献求助10
31秒前
Jhowe发布了新的文献求助10
33秒前
懒羊羊发布了新的文献求助10
34秒前
34秒前
ddd完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5566814
求助须知:如何正确求助?哪些是违规求助? 4651492
关于积分的说明 14696596
捐赠科研通 4593548
什么是DOI,文献DOI怎么找? 2520215
邀请新用户注册赠送积分活动 1492434
关于科研通互助平台的介绍 1463528