Features selection in a predictive model for cardiac surgery-associated acute kidney injury

医学 急性肾损伤 逻辑回归 接收机工作特性 心脏外科 肾脏疾病 特征选择 入射(几何) 内科学 重症监护医学 心脏病学 急诊医学 机器学习 物理 计算机科学 光学
作者
Qian Li,Jingjia Shen,Hong Lv,Yuye Chen,Chenghui Zhou,Jia Shi
出处
期刊:Perfusion [SAGE]
标识
DOI:10.1177/02676591241289364
摘要

Background Cardiac surgery-associated acute kidney injury (CSA-AKI) is related to increased morbidity and mortality. However, limited studies have explored the influence of different feature selection (FS) methods on the predictive performance of CSA-AKI. Therefore, we aimed to compare the impact of different FS methods for CSA-AKI. Methods CSA-AKI is defined according to the kidney disease: Improving Global Outcomes (KDIGO) criteria. Both traditional logistic regression and machine learning methods were used to select the potential risk factors for CSA-AKI. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the models. In addition, the importance matrix plot by random forest was used to rank the features' importance. Results A total of 1977 patients undergoing cardiac surgery at Fuwai hospital from December 2018 to April 2021 were enrolled. The incidence of CSA-AKI during the first postoperative week was 27.8%. We concluded that different enrolled numbers of features impact the final selected feature number. The more you input, the more likely its output with all FS methods. In terms of performance, all selected features by various FS methods demonstrated excellent AUCs. Meanwhile, the embedded method demonstrated the highest accuracy compared with the LR method, while the filter method showed the lowest accuracy. Furthermore, NT-proBNP was found to be strongly associated with AKI. Our results confirmed some features that previous studies have reported and found some novel clinical parameters. Conclusions In our study, FS was as suitable as LR for predicting CSA-AKI. For FS, the embedded method demonstrated better efficacy than the other methods. Furthermore, NT-proBNP was confirmed to be strongly associated with AKI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
一丢丢完成签到,获得积分10
5秒前
科研通AI6应助好好书童采纳,获得10
6秒前
6秒前
www完成签到,获得积分10
6秒前
胖胖胖胖完成签到,获得积分10
6秒前
7秒前
打打应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得30
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
认真的战斗机完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
FoxLY完成签到,获得积分10
9秒前
mark完成签到,获得积分10
9秒前
zhuboujs完成签到,获得积分10
9秒前
bkagyin应助酷酷幼旋采纳,获得10
10秒前
www发布了新的文献求助10
10秒前
张好人完成签到,获得积分10
10秒前
笑点低的小霜完成签到 ,获得积分10
10秒前
伍次友发布了新的文献求助10
10秒前
曹梓聪完成签到,获得积分10
11秒前
bkagyin应助种烟草的狗大户采纳,获得10
12秒前
121发布了新的文献求助10
13秒前
13秒前
13秒前
Chen完成签到 ,获得积分10
13秒前
烟花应助安详的惜梦采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434254
求助须知:如何正确求助?哪些是违规求助? 4546529
关于积分的说明 14202959
捐赠科研通 4466464
什么是DOI,文献DOI怎么找? 2448165
邀请新用户注册赠送积分活动 1439046
关于科研通互助平台的介绍 1415945