Features selection in a predictive model for cardiac surgery-associated acute kidney injury

医学 急性肾损伤 逻辑回归 接收机工作特性 心脏外科 肾脏疾病 特征选择 入射(几何) 内科学 重症监护医学 心脏病学 急诊医学 机器学习 计算机科学 光学 物理
作者
Qian Li,Jingjia Shen,Hong Lv,Yuye Chen,Chenghui Zhou,Jia Shi
出处
期刊:Perfusion [SAGE Publishing]
标识
DOI:10.1177/02676591241289364
摘要

Background Cardiac surgery-associated acute kidney injury (CSA-AKI) is related to increased morbidity and mortality. However, limited studies have explored the influence of different feature selection (FS) methods on the predictive performance of CSA-AKI. Therefore, we aimed to compare the impact of different FS methods for CSA-AKI. Methods CSA-AKI is defined according to the kidney disease: Improving Global Outcomes (KDIGO) criteria. Both traditional logistic regression and machine learning methods were used to select the potential risk factors for CSA-AKI. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the models. In addition, the importance matrix plot by random forest was used to rank the features' importance. Results A total of 1977 patients undergoing cardiac surgery at Fuwai hospital from December 2018 to April 2021 were enrolled. The incidence of CSA-AKI during the first postoperative week was 27.8%. We concluded that different enrolled numbers of features impact the final selected feature number. The more you input, the more likely its output with all FS methods. In terms of performance, all selected features by various FS methods demonstrated excellent AUCs. Meanwhile, the embedded method demonstrated the highest accuracy compared with the LR method, while the filter method showed the lowest accuracy. Furthermore, NT-proBNP was found to be strongly associated with AKI. Our results confirmed some features that previous studies have reported and found some novel clinical parameters. Conclusions In our study, FS was as suitable as LR for predicting CSA-AKI. For FS, the embedded method demonstrated better efficacy than the other methods. Furthermore, NT-proBNP was confirmed to be strongly associated with AKI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duang完成签到,获得积分10
刚刚
湘玉给你溜肥肠完成签到,获得积分10
1秒前
勿忘发布了新的文献求助10
1秒前
爆炸boom完成签到 ,获得积分10
1秒前
星辰大海应助xutaiyu采纳,获得10
2秒前
CICI完成签到,获得积分20
2秒前
2秒前
四夕完成签到 ,获得积分10
2秒前
3秒前
酷波er应助翻似烂柯人采纳,获得10
4秒前
上官若男应助generaliu采纳,获得10
4秒前
4秒前
hy完成签到,获得积分10
4秒前
渊_完成签到,获得积分10
4秒前
友好的灯泡完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
倪满分发布了新的文献求助10
6秒前
6秒前
小小小肥鸡完成签到,获得积分10
7秒前
7秒前
lin完成签到,获得积分10
8秒前
昏睡的咖啡完成签到,获得积分10
8秒前
8秒前
颜yy完成签到,获得积分20
8秒前
fd163c应助小星采纳,获得10
8秒前
webstertx发布了新的文献求助30
10秒前
10秒前
冯佩完成签到,获得积分10
10秒前
10秒前
有结果发布了新的文献求助10
11秒前
啦啦啦啦啦完成签到 ,获得积分10
11秒前
tantan发布了新的文献求助10
11秒前
Ava应助znsmaqwdy采纳,获得10
11秒前
11秒前
guoqing完成签到,获得积分10
11秒前
穆青发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885484
求助须知:如何正确求助?哪些是违规求助? 4170303
关于积分的说明 12941181
捐赠科研通 3931098
什么是DOI,文献DOI怎么找? 2156833
邀请新用户注册赠送积分活动 1175276
关于科研通互助平台的介绍 1079849