亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Features selection in a predictive model for cardiac surgery-associated acute kidney injury

医学 急性肾损伤 逻辑回归 接收机工作特性 心脏外科 肾脏疾病 特征选择 入射(几何) 内科学 重症监护医学 心脏病学 急诊医学 机器学习 物理 计算机科学 光学
作者
Qian Li,Jingjia Shen,Hong Lv,Yuye Chen,Chenghui Zhou,Jia Shi
出处
期刊:Perfusion [SAGE]
标识
DOI:10.1177/02676591241289364
摘要

Background Cardiac surgery-associated acute kidney injury (CSA-AKI) is related to increased morbidity and mortality. However, limited studies have explored the influence of different feature selection (FS) methods on the predictive performance of CSA-AKI. Therefore, we aimed to compare the impact of different FS methods for CSA-AKI. Methods CSA-AKI is defined according to the kidney disease: Improving Global Outcomes (KDIGO) criteria. Both traditional logistic regression and machine learning methods were used to select the potential risk factors for CSA-AKI. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the models. In addition, the importance matrix plot by random forest was used to rank the features' importance. Results A total of 1977 patients undergoing cardiac surgery at Fuwai hospital from December 2018 to April 2021 were enrolled. The incidence of CSA-AKI during the first postoperative week was 27.8%. We concluded that different enrolled numbers of features impact the final selected feature number. The more you input, the more likely its output with all FS methods. In terms of performance, all selected features by various FS methods demonstrated excellent AUCs. Meanwhile, the embedded method demonstrated the highest accuracy compared with the LR method, while the filter method showed the lowest accuracy. Furthermore, NT-proBNP was found to be strongly associated with AKI. Our results confirmed some features that previous studies have reported and found some novel clinical parameters. Conclusions In our study, FS was as suitable as LR for predicting CSA-AKI. For FS, the embedded method demonstrated better efficacy than the other methods. Furthermore, NT-proBNP was confirmed to be strongly associated with AKI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
Londidi完成签到,获得积分10
46秒前
学术混子完成签到,获得积分10
2分钟前
souther完成签到,获得积分0
2分钟前
xuli21315完成签到 ,获得积分10
2分钟前
3分钟前
FUNG完成签到 ,获得积分10
3分钟前
4分钟前
yang发布了新的文献求助10
4分钟前
yang完成签到,获得积分20
5分钟前
Jonas完成签到,获得积分10
5分钟前
摆烂的熊猫完成签到,获得积分20
6分钟前
柔弱的恋风完成签到 ,获得积分10
7分钟前
8分钟前
ding应助淡然平蓝采纳,获得10
8分钟前
chiazy完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
爱静静完成签到,获得积分0
9分钟前
zyx完成签到,获得积分10
9分钟前
wy123完成签到 ,获得积分10
9分钟前
善学以致用应助markzhang采纳,获得10
10分钟前
11分钟前
markzhang发布了新的文献求助10
11分钟前
喜雨起来啦完成签到,获得积分10
11分钟前
SciGPT应助markzhang采纳,获得10
11分钟前
科研通AI2S应助zhouleiwang采纳,获得10
12分钟前
冬去春来完成签到 ,获得积分10
12分钟前
烟花应助zhouleiwang采纳,获得10
12分钟前
上官若男应助碧蓝一德采纳,获得10
13分钟前
13分钟前
yy发布了新的文献求助10
13分钟前
13分钟前
顾矜应助yy采纳,获得10
13分钟前
烟花应助科研通管家采纳,获得10
13分钟前
markzhang发布了新的文献求助10
13分钟前
yy完成签到,获得积分10
13分钟前
markzhang完成签到,获得积分10
14分钟前
14分钟前
zhouleiwang发布了新的文献求助10
14分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142703
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7807027
捐赠科研通 2449875
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328