Features selection in a predictive model for cardiac surgery-associated acute kidney injury

医学 急性肾损伤 逻辑回归 接收机工作特性 心脏外科 肾脏疾病 特征选择 入射(几何) 内科学 重症监护医学 心脏病学 急诊医学 机器学习 物理 计算机科学 光学
作者
Qian Li,Jingjia Shen,Hong Lv,Yuye Chen,Chenghui Zhou,Jia Shi
出处
期刊:Perfusion [SAGE Publishing]
标识
DOI:10.1177/02676591241289364
摘要

Background Cardiac surgery-associated acute kidney injury (CSA-AKI) is related to increased morbidity and mortality. However, limited studies have explored the influence of different feature selection (FS) methods on the predictive performance of CSA-AKI. Therefore, we aimed to compare the impact of different FS methods for CSA-AKI. Methods CSA-AKI is defined according to the kidney disease: Improving Global Outcomes (KDIGO) criteria. Both traditional logistic regression and machine learning methods were used to select the potential risk factors for CSA-AKI. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the models. In addition, the importance matrix plot by random forest was used to rank the features' importance. Results A total of 1977 patients undergoing cardiac surgery at Fuwai hospital from December 2018 to April 2021 were enrolled. The incidence of CSA-AKI during the first postoperative week was 27.8%. We concluded that different enrolled numbers of features impact the final selected feature number. The more you input, the more likely its output with all FS methods. In terms of performance, all selected features by various FS methods demonstrated excellent AUCs. Meanwhile, the embedded method demonstrated the highest accuracy compared with the LR method, while the filter method showed the lowest accuracy. Furthermore, NT-proBNP was found to be strongly associated with AKI. Our results confirmed some features that previous studies have reported and found some novel clinical parameters. Conclusions In our study, FS was as suitable as LR for predicting CSA-AKI. For FS, the embedded method demonstrated better efficacy than the other methods. Furthermore, NT-proBNP was confirmed to be strongly associated with AKI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wqa1472完成签到,获得积分10
1秒前
结实的蘑菇完成签到 ,获得积分10
1秒前
lyx2010完成签到,获得积分10
1秒前
ZBY0216完成签到,获得积分10
1秒前
吴晨曦完成签到,获得积分10
2秒前
3秒前
研友_LwbYv8发布了新的文献求助10
3秒前
accelia完成签到,获得积分10
4秒前
卷卷完成签到,获得积分10
4秒前
4秒前
4秒前
周小浪完成签到,获得积分10
5秒前
王Hope完成签到,获得积分10
5秒前
5秒前
李爱国应助义气的白凝采纳,获得10
5秒前
5秒前
樊孟完成签到,获得积分10
6秒前
6秒前
科研通AI6应助子咸采纳,获得10
7秒前
流萤之光完成签到,获得积分20
7秒前
拼搏宛儿发布了新的文献求助30
7秒前
7秒前
8秒前
吴晨曦发布了新的文献求助10
8秒前
马俊完成签到,获得积分10
8秒前
Grace159完成签到 ,获得积分10
9秒前
潇洒天抒完成签到,获得积分10
9秒前
中森菜龙发布了新的文献求助10
9秒前
9秒前
nhsyb嘉发布了新的文献求助10
9秒前
瓦瓦应助Joseph采纳,获得50
9秒前
9秒前
9秒前
9秒前
9秒前
MchemG应助写论文采纳,获得30
10秒前
廖思巧完成签到,获得积分10
10秒前
简简发布了新的文献求助10
10秒前
10秒前
可爱的函函应助孙Tuan采纳,获得30
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337533
求助须知:如何正确求助?哪些是违规求助? 4474745
关于积分的说明 13925710
捐赠科研通 4369749
什么是DOI,文献DOI怎么找? 2400934
邀请新用户注册赠送积分活动 1394041
关于科研通互助平台的介绍 1365885