已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Features selection in a predictive model for cardiac surgery-associated acute kidney injury

医学 急性肾损伤 逻辑回归 接收机工作特性 心脏外科 肾脏疾病 特征选择 入射(几何) 内科学 重症监护医学 心脏病学 急诊医学 机器学习 物理 计算机科学 光学
作者
Qian Li,Jingjia Shen,Hong Lv,Yuye Chen,Chenghui Zhou,Jia Shi
出处
期刊:Perfusion [SAGE]
标识
DOI:10.1177/02676591241289364
摘要

Background Cardiac surgery-associated acute kidney injury (CSA-AKI) is related to increased morbidity and mortality. However, limited studies have explored the influence of different feature selection (FS) methods on the predictive performance of CSA-AKI. Therefore, we aimed to compare the impact of different FS methods for CSA-AKI. Methods CSA-AKI is defined according to the kidney disease: Improving Global Outcomes (KDIGO) criteria. Both traditional logistic regression and machine learning methods were used to select the potential risk factors for CSA-AKI. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the models. In addition, the importance matrix plot by random forest was used to rank the features' importance. Results A total of 1977 patients undergoing cardiac surgery at Fuwai hospital from December 2018 to April 2021 were enrolled. The incidence of CSA-AKI during the first postoperative week was 27.8%. We concluded that different enrolled numbers of features impact the final selected feature number. The more you input, the more likely its output with all FS methods. In terms of performance, all selected features by various FS methods demonstrated excellent AUCs. Meanwhile, the embedded method demonstrated the highest accuracy compared with the LR method, while the filter method showed the lowest accuracy. Furthermore, NT-proBNP was found to be strongly associated with AKI. Our results confirmed some features that previous studies have reported and found some novel clinical parameters. Conclusions In our study, FS was as suitable as LR for predicting CSA-AKI. For FS, the embedded method demonstrated better efficacy than the other methods. Furthermore, NT-proBNP was confirmed to be strongly associated with AKI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
peng发布了新的文献求助10
2秒前
树风发布了新的文献求助10
3秒前
syleaf完成签到 ,获得积分10
4秒前
lh23发布了新的文献求助10
4秒前
5秒前
Da You完成签到 ,获得积分10
5秒前
7秒前
姜忆霜发布了新的文献求助10
7秒前
Tree_发布了新的文献求助10
11秒前
12秒前
坚定珩发布了新的文献求助10
13秒前
14秒前
14秒前
17秒前
殴打阿达发布了新的文献求助150
17秒前
华仔应助asdqweqwe采纳,获得10
17秒前
Mia发布了新的文献求助10
17秒前
时尚以亦发布了新的文献求助30
20秒前
20秒前
20秒前
23秒前
25秒前
充电宝应助宁人采纳,获得10
25秒前
26秒前
lh23完成签到,获得积分10
26秒前
打打应助Why采纳,获得10
28秒前
繁荣的元灵应助活泼送终采纳,获得10
28秒前
小二郎应助Mia采纳,获得10
29秒前
小邸发布了新的文献求助10
29秒前
烟花应助忧郁的鱿鱼采纳,获得10
30秒前
所所应助yuanyuan采纳,获得10
30秒前
lemonyu发布了新的文献求助10
31秒前
走走发布了新的文献求助10
31秒前
31秒前
坚定珩发布了新的文献求助10
31秒前
32秒前
科研通AI6应助第五元素采纳,获得10
32秒前
田様应助自觉的溪灵采纳,获得10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599474
求助须知:如何正确求助?哪些是违规求助? 4685116
关于积分的说明 14837894
捐赠科研通 4668470
什么是DOI,文献DOI怎么找? 2537994
邀请新用户注册赠送积分活动 1505428
关于科研通互助平台的介绍 1470784