Features selection in a predictive model for cardiac surgery-associated acute kidney injury

医学 急性肾损伤 逻辑回归 接收机工作特性 心脏外科 肾脏疾病 特征选择 入射(几何) 内科学 重症监护医学 心脏病学 急诊医学 机器学习 计算机科学 光学 物理
作者
Qian Li,Jingjia Shen,Hong Lv,Yuye Chen,Chenghui Zhou,Jia Shi
出处
期刊:Perfusion [SAGE Publishing]
标识
DOI:10.1177/02676591241289364
摘要

Background Cardiac surgery-associated acute kidney injury (CSA-AKI) is related to increased morbidity and mortality. However, limited studies have explored the influence of different feature selection (FS) methods on the predictive performance of CSA-AKI. Therefore, we aimed to compare the impact of different FS methods for CSA-AKI. Methods CSA-AKI is defined according to the kidney disease: Improving Global Outcomes (KDIGO) criteria. Both traditional logistic regression and machine learning methods were used to select the potential risk factors for CSA-AKI. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the models. In addition, the importance matrix plot by random forest was used to rank the features' importance. Results A total of 1977 patients undergoing cardiac surgery at Fuwai hospital from December 2018 to April 2021 were enrolled. The incidence of CSA-AKI during the first postoperative week was 27.8%. We concluded that different enrolled numbers of features impact the final selected feature number. The more you input, the more likely its output with all FS methods. In terms of performance, all selected features by various FS methods demonstrated excellent AUCs. Meanwhile, the embedded method demonstrated the highest accuracy compared with the LR method, while the filter method showed the lowest accuracy. Furthermore, NT-proBNP was found to be strongly associated with AKI. Our results confirmed some features that previous studies have reported and found some novel clinical parameters. Conclusions In our study, FS was as suitable as LR for predicting CSA-AKI. For FS, the embedded method demonstrated better efficacy than the other methods. Furthermore, NT-proBNP was confirmed to be strongly associated with AKI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助害羞的花生采纳,获得10
1秒前
1秒前
原始人完成签到,获得积分10
1秒前
克己复礼完成签到,获得积分20
2秒前
寒冷听枫完成签到,获得积分20
2秒前
2秒前
3秒前
lukawa发布了新的文献求助10
3秒前
韩涵完成签到 ,获得积分10
4秒前
鸭子兔完成签到,获得积分10
5秒前
5秒前
FashionBoy应助烂漫猫咪采纳,获得10
5秒前
默默南晴发布了新的文献求助10
5秒前
猴子大王666完成签到,获得积分10
5秒前
ardejiang发布了新的文献求助10
5秒前
跳不起来的大神完成签到 ,获得积分10
5秒前
6秒前
情怀应助木木采纳,获得10
6秒前
领导范儿应助lailai采纳,获得10
6秒前
kun完成签到,获得积分10
6秒前
迷糊发布了新的文献求助10
6秒前
6秒前
大成子发布了新的文献求助10
7秒前
专注可兰完成签到,获得积分10
7秒前
思源应助hooke采纳,获得10
7秒前
善学以致用应助挺喜欢你采纳,获得10
8秒前
kingwill应助感动书文采纳,获得20
8秒前
体贴的夜安应助kento采纳,获得50
8秒前
ZHANES发布了新的文献求助30
8秒前
zz发布了新的文献求助10
9秒前
123456789完成签到,获得积分10
9秒前
2464259931发布了新的文献求助10
9秒前
AhhHuang应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559435
求助须知:如何正确求助?哪些是违规求助? 3985900
关于积分的说明 12340835
捐赠科研通 3656514
什么是DOI,文献DOI怎么找? 2014495
邀请新用户注册赠送积分活动 1049235
科研通“疑难数据库(出版商)”最低求助积分说明 937558