Features selection in a predictive model for cardiac surgery-associated acute kidney injury

医学 急性肾损伤 逻辑回归 接收机工作特性 心脏外科 肾脏疾病 特征选择 入射(几何) 内科学 重症监护医学 心脏病学 急诊医学 机器学习 物理 计算机科学 光学
作者
Qian Li,Jingjia Shen,Hong Lv,Yuye Chen,Chenghui Zhou,Jia Shi
出处
期刊:Perfusion [SAGE Publishing]
标识
DOI:10.1177/02676591241289364
摘要

Background Cardiac surgery-associated acute kidney injury (CSA-AKI) is related to increased morbidity and mortality. However, limited studies have explored the influence of different feature selection (FS) methods on the predictive performance of CSA-AKI. Therefore, we aimed to compare the impact of different FS methods for CSA-AKI. Methods CSA-AKI is defined according to the kidney disease: Improving Global Outcomes (KDIGO) criteria. Both traditional logistic regression and machine learning methods were used to select the potential risk factors for CSA-AKI. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the models. In addition, the importance matrix plot by random forest was used to rank the features' importance. Results A total of 1977 patients undergoing cardiac surgery at Fuwai hospital from December 2018 to April 2021 were enrolled. The incidence of CSA-AKI during the first postoperative week was 27.8%. We concluded that different enrolled numbers of features impact the final selected feature number. The more you input, the more likely its output with all FS methods. In terms of performance, all selected features by various FS methods demonstrated excellent AUCs. Meanwhile, the embedded method demonstrated the highest accuracy compared with the LR method, while the filter method showed the lowest accuracy. Furthermore, NT-proBNP was found to be strongly associated with AKI. Our results confirmed some features that previous studies have reported and found some novel clinical parameters. Conclusions In our study, FS was as suitable as LR for predicting CSA-AKI. For FS, the embedded method demonstrated better efficacy than the other methods. Furthermore, NT-proBNP was confirmed to be strongly associated with AKI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追梦完成签到,获得积分10
3秒前
14秒前
weiwei完成签到 ,获得积分10
16秒前
木鱼浪花完成签到 ,获得积分10
21秒前
may完成签到 ,获得积分10
29秒前
swordshine完成签到,获得积分0
30秒前
pengyh8完成签到 ,获得积分10
32秒前
多情dingding完成签到,获得积分10
33秒前
Xu完成签到,获得积分10
34秒前
38秒前
直率若烟完成签到 ,获得积分10
41秒前
末末完成签到 ,获得积分10
41秒前
44秒前
46秒前
程宇发布了新的文献求助10
52秒前
美少叔叔完成签到 ,获得积分10
55秒前
孙老师完成签到 ,获得积分10
55秒前
江三村完成签到 ,获得积分10
58秒前
小鱼女侠完成签到 ,获得积分10
59秒前
1分钟前
ZRL完成签到,获得积分10
1分钟前
平淡尔琴完成签到,获得积分10
1分钟前
标致的之柔完成签到 ,获得积分10
1分钟前
叁月二完成签到 ,获得积分10
1分钟前
火星上惜天完成签到 ,获得积分10
1分钟前
练得身形似鹤形完成签到 ,获得积分10
1分钟前
1分钟前
catalina完成签到,获得积分10
1分钟前
CY完成签到,获得积分10
1分钟前
77完成签到,获得积分10
1分钟前
简爱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
humble完成签到 ,获得积分10
1分钟前
白凌风完成签到 ,获得积分10
2分钟前
2分钟前
菜小芽完成签到 ,获得积分10
2分钟前
体贴香岚完成签到 ,获得积分10
2分钟前
isedu完成签到,获得积分0
2分钟前
Anna完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5368658
求助须知:如何正确求助?哪些是违规求助? 4496363
关于积分的说明 13996934
捐赠科研通 4401705
什么是DOI,文献DOI怎么找? 2417996
邀请新用户注册赠送积分活动 1410669
关于科研通互助平台的介绍 1386574