Depth-adaptive graph neural architecture search for graph classification

计算机科学 图形 人工智能 理论计算机科学
作者
Zhenpeng Wu,Jiamin Chen,Raeed Al-Sabri,Babatounde Moctard Oloulade,Jianliang Gao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:301: 112321-112321
标识
DOI:10.1016/j.knosys.2024.112321
摘要

In recent years, graph neural networks (GNNs) based on neighborhood aggregation schemes have become a promising method in various graph-based applications. To solve the expert-dependent and time-consuming problem in human-designed GNN architectures, graph neural architecture search (GNAS) has been popular. However, as the mainstream GNAS methods automatically design GNN architectures with fixed GNN depth, they cannot mine the true potential of GNN architectures for graph classification. Although a few GNAS methods have explored the importance of adaptive GNN depth based on fixed GNN architectures, they have not designed a general search space for graph classification, which limits the discovery of excellent GNN architectures. In this paper, we propose Depth-Adaptive Graph Neural Architecture Search for Graph Classification (DAGC), which systemically constructs and explores the search space for graph classification, rather than studying individual designs. Through decoupling the graph classification process, DAGC proposes a complete and flexible search space, including GNN depth, aggregation function, and pooling operation components. To this end, DAGC adopts a learnable agent based on reinforcement learning to effectively guide the search for depth-adaptive GNN architectures. Extensive experiments on five real-world datasets demonstrate that DAGC outperforms the state-of-the-art human-designed GNN architectures and GNAS methods. The code is available at: https://github.com/Zhen-Peng-Wu/DAGC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小不溜完成签到,获得积分10
1秒前
2秒前
科研通AI2S应助turbo采纳,获得10
2秒前
2秒前
4秒前
没风的季节完成签到,获得积分10
6秒前
6秒前
超级灰狼完成签到 ,获得积分10
8秒前
阿琳发布了新的文献求助10
8秒前
WHY驳回了华仔应助
8秒前
DY发布了新的文献求助10
9秒前
Umwandlung完成签到,获得积分10
10秒前
10秒前
清秀成威应助煮饭吃Zz采纳,获得10
11秒前
13秒前
14秒前
akamanuo完成签到,获得积分10
14秒前
15秒前
Yet.完成签到,获得积分10
15秒前
CodeCraft应助jy采纳,获得10
16秒前
华仔应助hh采纳,获得10
16秒前
pcr163应助wangfeng007采纳,获得200
18秒前
samosa发布了新的文献求助10
18秒前
Lucas应助人来人往采纳,获得10
19秒前
大模型应助阿琳采纳,获得10
19秒前
20秒前
苏航完成签到,获得积分20
20秒前
lize5493发布了新的文献求助10
21秒前
22秒前
LLLLL完成签到 ,获得积分10
22秒前
24秒前
斯文败类应助DY采纳,获得10
24秒前
Leon发布了新的文献求助10
24秒前
脑洞疼应助iwersonshmtu采纳,获得10
25秒前
苏航发布了新的文献求助10
26秒前
tramp应助GaPb氘壬采纳,获得20
29秒前
杰柯学完成签到,获得积分10
29秒前
英俊的铭应助视野胤采纳,获得10
31秒前
32秒前
蘑菇完成签到,获得积分10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012