Edge–cloud collaborative estimation lithium-ion battery SOH based on MEWOA-VMD and Transformer

锂离子电池 变压器 云计算 计算机科学 GSM演进的增强数据速率 离子 电池(电) 电气工程 材料科学 工程类 人工智能 化学 物理 电压 操作系统 功率(物理) 有机化学 量子力学
作者
Yuan Chen,Xiaohe Huang,Yigang He,Siyuan Zhang,Yujing Cai
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:99: 113388-113388 被引量:3
标识
DOI:10.1016/j.est.2024.113388
摘要

The State of Health (SOH) of lithium-ion batteries significantly impacts the performance, safety, and reliability of the battery, making it a crucial component of the battery management system. Addressing the issues of inadequate accuracy and lack of robustness in current SOH estimation methods, this study introduces a novel methodology for estimating SOH in lithium-ion batteries. It leverages the multi-population evolution whale optimization algorithm optimized variational mode decomposition (MEWOA-VMD) in conjunction with Transformer architecture. This framework enhances the efficiency and accuracy of SOH estimation by leveraging the computational capabilities of edge devices for real-time data processing, as well as the robust data processing power and model training advantages offered by cloud computing. Specifically, MEWOA is utilized to optimize VMD parameters, enabling MEWOA-VMD to fully decompose the capacity signal of lithium-ion batteries. This results in a component showing a global attenuation trend and a set of fluctuating components that represent capacity regeneration, thereby minimizing the impact of capacity regeneration on SOH estimation. Subsequently, all components are collectively input into the Transformer, marking the first application of this method for input. To enhance convergence speed and training efficiency, the layer normalization (LN) layer within the neural network architecture is proactively advanced. Finally, various artificial neural networks are compared and validated on three publicly available datasets. Furthermore, Gaussian noise is introduced into the original data to validate robustness. To confirm the practical applicability of the proposed method, real-world vehicle data is used for SOH estimation. The results indicate that the proposed method achieves a maximum MSE of no more than 0.009% across three publicly available datasets, showcasing improved accuracy and stability in SOH estimation. The practical applicability is further validated using real-world vehicle data, proving the proposed method's potential for application in edge cloud-based battery management systems. • Apply VMD to decompose battery data; feed IMFs simultaneously into Transformer. • Propose MEWOA to optimize VMD parameters, enhancing decomposition effectiveness. • Develop a model for SOH estimation, creating a edge–cloud collaborative framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酸辣完成签到 ,获得积分10
刚刚
Leo完成签到,获得积分10
2秒前
2秒前
2秒前
小林子完成签到,获得积分10
2秒前
Beyond完成签到,获得积分10
3秒前
Akim应助zhangjj28采纳,获得10
8秒前
TT发布了新的文献求助10
8秒前
飞飞完成签到,获得积分10
8秒前
醉熏的伊完成签到,获得积分10
10秒前
美好灵寒完成签到 ,获得积分10
11秒前
萧然完成签到,获得积分10
15秒前
容容容完成签到 ,获得积分10
16秒前
FangyingTang完成签到 ,获得积分10
16秒前
Ann完成签到,获得积分10
17秒前
清浅溪完成签到 ,获得积分10
17秒前
sdfdzhang完成签到 ,获得积分10
19秒前
lu完成签到,获得积分10
19秒前
帮我带个饭完成签到 ,获得积分10
20秒前
半只小羊完成签到 ,获得积分10
20秒前
Clearly完成签到 ,获得积分10
20秒前
嗯是我完成签到,获得积分10
20秒前
alvin完成签到,获得积分10
22秒前
动听的老鼠完成签到 ,获得积分10
26秒前
zhangzhen完成签到,获得积分10
26秒前
ken131完成签到 ,获得积分10
26秒前
研友_VZG7GZ应助madison采纳,获得10
27秒前
lm完成签到 ,获得积分10
27秒前
hj123完成签到,获得积分10
27秒前
东风完成签到,获得积分10
27秒前
AURORA丶完成签到 ,获得积分10
28秒前
曹国庆完成签到 ,获得积分10
33秒前
儒雅的千秋完成签到,获得积分10
33秒前
张先生2365完成签到,获得积分10
34秒前
xiaoguang li完成签到,获得积分0
35秒前
wmszhd完成签到,获得积分10
36秒前
大鲨鱼完成签到 ,获得积分10
37秒前
发发完成签到,获得积分10
40秒前
留胡子的小虾米完成签到,获得积分10
41秒前
Bioflying完成签到,获得积分10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Maneuvering of a Damaged Navy Combatant 650
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770540
求助须知:如何正确求助?哪些是违规求助? 3315496
关于积分的说明 10176592
捐赠科研通 3030553
什么是DOI,文献DOI怎么找? 1663023
邀请新用户注册赠送积分活动 795258
科研通“疑难数据库(出版商)”最低求助积分说明 756705