Edge–cloud collaborative estimation lithium-ion battery SOH based on MEWOA-VMD and Transformer

锂离子电池 变压器 云计算 计算机科学 GSM演进的增强数据速率 离子 电池(电) 电气工程 材料科学 工程类 人工智能 化学 物理 电压 操作系统 功率(物理) 有机化学 量子力学
作者
Yuan Chen,Xiaohe Huang,Yigang He,Siyuan Zhang,Yujing Cai
出处
期刊:Journal of energy storage [Elsevier]
卷期号:99: 113388-113388 被引量:3
标识
DOI:10.1016/j.est.2024.113388
摘要

The State of Health (SOH) of lithium-ion batteries significantly impacts the performance, safety, and reliability of the battery, making it a crucial component of the battery management system. Addressing the issues of inadequate accuracy and lack of robustness in current SOH estimation methods, this study introduces a novel methodology for estimating SOH in lithium-ion batteries. It leverages the multi-population evolution whale optimization algorithm optimized variational mode decomposition (MEWOA-VMD) in conjunction with Transformer architecture. This framework enhances the efficiency and accuracy of SOH estimation by leveraging the computational capabilities of edge devices for real-time data processing, as well as the robust data processing power and model training advantages offered by cloud computing. Specifically, MEWOA is utilized to optimize VMD parameters, enabling MEWOA-VMD to fully decompose the capacity signal of lithium-ion batteries. This results in a component showing a global attenuation trend and a set of fluctuating components that represent capacity regeneration, thereby minimizing the impact of capacity regeneration on SOH estimation. Subsequently, all components are collectively input into the Transformer, marking the first application of this method for input. To enhance convergence speed and training efficiency, the layer normalization (LN) layer within the neural network architecture is proactively advanced. Finally, various artificial neural networks are compared and validated on three publicly available datasets. Furthermore, Gaussian noise is introduced into the original data to validate robustness. To confirm the practical applicability of the proposed method, real-world vehicle data is used for SOH estimation. The results indicate that the proposed method achieves a maximum MSE of no more than 0.009% across three publicly available datasets, showcasing improved accuracy and stability in SOH estimation. The practical applicability is further validated using real-world vehicle data, proving the proposed method's potential for application in edge cloud-based battery management systems. • Apply VMD to decompose battery data; feed IMFs simultaneously into Transformer. • Propose MEWOA to optimize VMD parameters, enhancing decomposition effectiveness. • Develop a model for SOH estimation, creating a edge–cloud collaborative framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
煜琪发布了新的文献求助10
3秒前
syr完成签到 ,获得积分10
5秒前
dreamode应助萨尔莫斯采纳,获得10
6秒前
赫青亦完成签到 ,获得积分10
8秒前
lilylwy完成签到 ,获得积分0
10秒前
fawr完成签到 ,获得积分10
13秒前
yiren完成签到 ,获得积分10
17秒前
科研小白完成签到 ,获得积分10
19秒前
陆上飞完成签到,获得积分10
22秒前
xs完成签到,获得积分10
22秒前
笨笨忘幽完成签到,获得积分10
30秒前
JUANG完成签到,获得积分10
45秒前
50秒前
科研通AI2S应助白华苍松采纳,获得10
51秒前
钟声完成签到,获得积分0
53秒前
英俊延恶发布了新的文献求助10
55秒前
所所应助煜琪采纳,获得10
57秒前
CLTTT完成签到,获得积分10
1分钟前
整齐的惮完成签到 ,获得积分10
1分钟前
1分钟前
煜琪发布了新的文献求助10
1分钟前
...完成签到 ,获得积分10
1分钟前
苏子轩完成签到 ,获得积分10
1分钟前
1分钟前
怡然白竹完成签到 ,获得积分10
1分钟前
wang发布了新的文献求助10
1分钟前
unowhoiam完成签到 ,获得积分10
1分钟前
1分钟前
LJ_2完成签到 ,获得积分10
1分钟前
饱满的棒棒糖完成签到 ,获得积分10
1分钟前
wang完成签到,获得积分10
1分钟前
枫林摇曳完成签到 ,获得积分10
1分钟前
zhuosht完成签到 ,获得积分10
1分钟前
652183758完成签到 ,获得积分10
1分钟前
李新光完成签到 ,获得积分10
1分钟前
科研通AI5应助xiuxiu采纳,获得10
1分钟前
1分钟前
真实的觅儿完成签到 ,获得积分10
1分钟前
xilin完成签到 ,获得积分10
1分钟前
mito完成签到,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539114
求助须知:如何正确求助?哪些是违规求助? 3116731
关于积分的说明 9326595
捐赠科研通 2814659
什么是DOI,文献DOI怎么找? 1547002
邀请新用户注册赠送积分活动 720722
科研通“疑难数据库(出版商)”最低求助积分说明 712192