Fracture risk prediction in diabetes patients based on Lasso feature selection and Machine Learning

特征选择 Lasso(编程语言) 人工智能 机器学习 特征(语言学) 糖尿病 选择(遗传算法) 计算机科学 断裂(地质) 医学 模式识别(心理学) 工程类 内分泌学 万维网 哲学 岩土工程 语言学
作者
Shi Yu,Junhua Fang,Jiayi Li,Kaiwen Yu,Jingbo Zhu,Yan Lu
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Informa]
卷期号:: 1-17 被引量:1
标识
DOI:10.1080/10255842.2024.2400325
摘要

Fracture risk among individuals with diabetes poses significant clinical challenges due to the multifaceted relationship between diabetes and bone health. Diabetes not only affects bone density but also alters bone quality and structure, thereby increases the susceptibility to fractures. Given the rising prevalence of diabetes worldwide and its associated complications, accurate prediction of fracture risk in diabetic individuals has emerged as a pressing clinical need. This study aims to investigate the factors influencing fracture risk among diabetic patients. We propose a framework that combines Lasso feature selection with eight classification algorithms. Initially, Lasso regression is employed to select 24 significant features. Subsequently, we utilize grid search and 5-fold cross-validation to train and tune the selected classification algorithms, including KNN, Naive Bayes, Decision Tree, Random Forest, AdaBoost, XGBoost, Multi-layer Perceptron (MLP), and Support Vector Machine (SVM). Among models trained using these important features, Random Forest exhibits the highest performance with a predictive accuracy of 93.87%. Comparative analysis across all features, important features, and remaining features demonstrate the crucial role of features selected by Lasso regression in predicting fracture risk among diabetic patients. Besides, by using a feature importance ranking algorithm, we find several features that hold significant reference values for predicting early bone fracture risk in diabetic individuals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
树下发布了新的文献求助30
1秒前
1秒前
1秒前
QLLW发布了新的文献求助10
1秒前
沉默的心情完成签到,获得积分10
2秒前
zoe关注了科研通微信公众号
2秒前
Rhenium完成签到 ,获得积分10
2秒前
2秒前
希望天下0贩的0应助cyy1226采纳,获得10
3秒前
十七发布了新的文献求助10
3秒前
王威发布了新的文献求助10
3秒前
开放蓝天应助nankebowbow采纳,获得10
3秒前
阿里巴巴完成签到,获得积分10
4秒前
青柠发布了新的文献求助10
4秒前
4秒前
tzy完成签到,获得积分10
4秒前
wanci应助爱笑的水蓝采纳,获得30
4秒前
niNe3YUE应助Sera采纳,获得10
5秒前
Akim应助heello采纳,获得10
5秒前
罐装冰块发布了新的文献求助10
5秒前
5秒前
duoduo发布了新的文献求助10
5秒前
5秒前
辰叶发布了新的文献求助10
6秒前
6秒前
SHIYU完成签到,获得积分10
7秒前
深情安青应助十二采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
zjfinal完成签到,获得积分10
8秒前
8秒前
Lucas应助lulu采纳,获得10
8秒前
研友_VZG7GZ应助屿鑫采纳,获得10
9秒前
xiaobai完成签到,获得积分10
9秒前
Hu发布了新的文献求助10
9秒前
9秒前
9秒前
萧筱尧完成签到 ,获得积分20
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576558
求助须知:如何正确求助?哪些是违规求助? 4661927
关于积分的说明 14738788
捐赠科研通 4602503
什么是DOI,文献DOI怎么找? 2525869
邀请新用户注册赠送积分活动 1495750
关于科研通互助平台的介绍 1465414