Predicting rice phenology across China by integrating crop phenology model and machine learning

物候学 中国 机器学习 作物 人工智能 计算机科学 地理 农学 林业 生物 考古
作者
Jinhan Zhang,Xiaomao Lin,Chongya Jiang,Xuntao Hu,Bing Liu,Lei‐Lei Liu,Liujun Xiao,Yan Zhu,Weixing Cao,Liang Tang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:951: 175585-175585 被引量:1
标识
DOI:10.1016/j.scitotenv.2024.175585
摘要

This study explores the integration of crop phenology models and machine learning approaches for predicting rice phenology across China, to gain a deeper understanding of rice phenology prediction. Multiple approaches were used to predict heading and maturity dates at 337 locations across the main rice growing regions of China from 1981 to 2020, including crop phenology model, machine learning and hybrid model that integrate both approaches. Furthermore, an interpretable machine learning (IML) using SHapley Additive exPlanation (SHAP) was employed to elucidate influence of climatic and varietal factors on uncertainty in crop phenology model predictions. Overall, the hybrid model demonstrated a high accuracy in predicting rice phenology, followed by machine learning and crop phenology models. The best hybrid model, based on a serial structure and the eXtreme Gradient Boosting (XGBoost) algorithm, achieved a root mean square error (RMSE) of 4.65 and 5.72 days and coefficient of determination (R2) values of 0.93 and 0.9 for heading and maturity predictions, respectively. SHAP analysis revealed temperature to be the most influential climate variable affecting phenology predictions, particularly under extreme temperature conditions, while rainfall and solar radiation were found to be less influential. The analysis also highlighted the variable importance of climate across different phenological stages, rice cultivation patterns, and geographic regions, underscoring the notable regionality. The study proposed that a hybrid model using an IML approach would not only improve the accuracy of prediction but also offer a robust framework for leveraging data-driven in crop modeling, providing a valuable tool for refining and advancing the modeling process in rice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
崔佳鑫完成签到 ,获得积分10
刚刚
1秒前
1秒前
小羊肖恩发布了新的文献求助10
1秒前
2秒前
zz完成签到,获得积分10
2秒前
Migue应助DLL采纳,获得10
3秒前
chart完成签到 ,获得积分10
4秒前
思源应助chenshen采纳,获得10
4秒前
4秒前
去看海嘛应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
5秒前
Singularity应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
小寒0812完成签到,获得积分10
6秒前
7秒前
舒心莫言完成签到,获得积分10
7秒前
CipherSage应助帅气的藏鸟采纳,获得10
7秒前
zhangmy1989完成签到,获得积分20
9秒前
个性的大白菜真实的钥匙完成签到 ,获得积分10
9秒前
11秒前
zmx123123完成签到,获得积分10
11秒前
啊我吗完成签到,获得积分10
12秒前
轻松尔蝶完成签到 ,获得积分10
13秒前
玲儿完成签到,获得积分10
14秒前
15秒前
panx发布了新的文献求助10
16秒前
L77完成签到,获得积分0
16秒前
xczhu完成签到,获得积分10
17秒前
lbw完成签到 ,获得积分10
18秒前
L77发布了新的文献求助10
18秒前
任性的思远完成签到 ,获得积分10
18秒前
20秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165129
求助须知:如何正确求助?哪些是违规求助? 2816163
关于积分的说明 7911618
捐赠科研通 2475835
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632124
版权声明 602388