Predicting rice phenology across China by integrating crop phenology model and machine learning

物候学 中国 机器学习 作物 人工智能 计算机科学 地理 农学 林业 生物 考古
作者
Jinhan Zhang,Xiaomao Lin,Chongya Jiang,Xuntao Hu,Bing Liu,Lei‐Lei Liu,Liujun Xiao,Yan Zhu,Weixing Cao,Liang Tang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:951: 175585-175585 被引量:18
标识
DOI:10.1016/j.scitotenv.2024.175585
摘要

This study explores the integration of crop phenology models and machine learning approaches for predicting rice phenology across China, to gain a deeper understanding of rice phenology prediction. Multiple approaches were used to predict heading and maturity dates at 337 locations across the main rice growing regions of China from 1981 to 2020, including crop phenology model, machine learning and hybrid model that integrate both approaches. Furthermore, an interpretable machine learning (IML) using SHapley Additive exPlanation (SHAP) was employed to elucidate influence of climatic and varietal factors on uncertainty in crop phenology model predictions. Overall, the hybrid model demonstrated a high accuracy in predicting rice phenology, followed by machine learning and crop phenology models. The best hybrid model, based on a serial structure and the eXtreme Gradient Boosting (XGBoost) algorithm, achieved a root mean square error (RMSE) of 4.65 and 5.72 days and coefficient of determination (R2) values of 0.93 and 0.9 for heading and maturity predictions, respectively. SHAP analysis revealed temperature to be the most influential climate variable affecting phenology predictions, particularly under extreme temperature conditions, while rainfall and solar radiation were found to be less influential. The analysis also highlighted the variable importance of climate across different phenological stages, rice cultivation patterns, and geographic regions, underscoring the notable regionality. The study proposed that a hybrid model using an IML approach would not only improve the accuracy of prediction but also offer a robust framework for leveraging data-driven in crop modeling, providing a valuable tool for refining and advancing the modeling process in rice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨卓甲发布了新的文献求助10
刚刚
2秒前
共享精神应助一二采纳,获得10
2秒前
吴侬软语完成签到 ,获得积分10
2秒前
6秒前
7秒前
香蕉谷芹发布了新的文献求助10
7秒前
蓝天应助山楂采纳,获得10
8秒前
13秒前
年年完成签到,获得积分10
15秒前
明亮的念梦完成签到 ,获得积分10
16秒前
科研通AI2S应助健忘傲柏采纳,获得10
17秒前
17秒前
19秒前
22秒前
JamesPei应助小白采纳,获得10
23秒前
huagu722发布了新的文献求助10
24秒前
24秒前
24秒前
24秒前
25秒前
26秒前
ck完成签到 ,获得积分20
26秒前
28秒前
liuyepiao完成签到,获得积分10
29秒前
EurekaOvo发布了新的文献求助10
29秒前
李爱国应助zhou国兵采纳,获得10
30秒前
YangZhang发布了新的文献求助10
30秒前
31秒前
zwj发布了新的文献求助10
33秒前
思源应助yuanjie采纳,获得10
33秒前
留猪发布了新的文献求助10
33秒前
33秒前
毛毛发布了新的文献求助10
36秒前
Wangjingxuan发布了新的文献求助10
38秒前
qzs完成签到,获得积分10
40秒前
41秒前
赘婿应助SICHEN采纳,获得10
42秒前
Jrssion完成签到,获得积分10
43秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869551
求助须知:如何正确求助?哪些是违规求助? 6453169
关于积分的说明 15661332
捐赠科研通 4985385
什么是DOI,文献DOI怎么找? 2688390
邀请新用户注册赠送积分活动 1630820
关于科研通互助平台的介绍 1588927