Remaining useful life prediction of lithium-ion batteries based on autoregression with exogenous variables model

锂(药物) 自回归模型 向量自回归 计量经济学 可靠性工程 计算机科学 工程类 数学 内科学 医学
作者
Zhelin Huang,Zhihua Ma
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:: 110485-110485
标识
DOI:10.1016/j.ress.2024.110485
摘要

The gradual decrease capacity serves as a pivotal health indicator, reflecting the condition of lithium-ion batteries. Accurate forecasting of capacity can ascertain the remaining lifespan of these batteries at any given cycle, which is crucial for managing batteries in electric vehicles. This paper proposes an Autoregression with Exogenous Variables (AREV) model, which continually updates itself through a sliding window, offering predictions of battery state of health and remaining useful life, which extends battery prognostics at a fixed operating condition to different operating conditions. In addition, unlike most models that require multiple battery data of the same type for training, the proposed model only requires the use of fragmented data of the target battery with length around 30-50 cycles for capacity prediction and determines battery life based on battery failure thresholds. The above two points enable this model to be updated online without the need for any offline training. Finally, four different types of battery dataset , with different chemical substances and different charge and discharge conditions (especially dataset that follows random walk discharging profile to stimulate the real power consumption process) , are applied to verify the effectiveness and robustness of proposed RUL prediction approach. It shows that the proposed model can accurately predicting future capacity values. Timely warning signals can be issued before the end of life of battery, thereby ensuring the safe driving of electric vehicles and timely battery replacement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让电源完成签到,获得积分10
2秒前
Clover04应助onmyway采纳,获得10
2秒前
小二郎应助zhu采纳,获得10
2秒前
3秒前
4秒前
达克男孩完成签到,获得积分0
5秒前
5秒前
6秒前
fearless完成签到,获得积分10
6秒前
wll关注了科研通微信公众号
6秒前
www完成签到,获得积分10
7秒前
7秒前
彭于晏应助rrr采纳,获得10
7秒前
从容乌完成签到 ,获得积分10
7秒前
Lucas应助辛夷采纳,获得10
9秒前
9秒前
谦让电源发布了新的文献求助10
10秒前
10秒前
香蕉觅云应助ww采纳,获得10
11秒前
12秒前
Hana发布了新的文献求助10
13秒前
deng完成签到 ,获得积分10
14秒前
丰盛的煎饼应助方方公主采纳,获得10
14秒前
14秒前
AAA完成签到,获得积分10
15秒前
瀚森发布了新的文献求助20
15秒前
j736999565发布了新的文献求助10
16秒前
调皮的翠绿关注了科研通微信公众号
17秒前
含糊的小松鼠完成签到,获得积分10
17秒前
桐桐应助斯文墨镜采纳,获得10
17秒前
NexusExplorer应助jjkjkjkjj采纳,获得10
18秒前
18秒前
19秒前
没头脑完成签到,获得积分10
19秒前
孤虹哲凝完成签到,获得积分10
19秒前
王楠楠发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
22秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158017
求助须知:如何正确求助?哪些是违规求助? 2809393
关于积分的说明 7881798
捐赠科研通 2467878
什么是DOI,文献DOI怎么找? 1313757
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943