Remaining useful life prediction of lithium-ion batteries based on autoregression with exogenous variables model

锂(药物) 自回归模型 向量自回归 计量经济学 可靠性工程 计算机科学 工程类 数学 内科学 医学
作者
Zhelin Huang,Zhihua Ma
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:: 110485-110485
标识
DOI:10.1016/j.ress.2024.110485
摘要

The gradual decrease capacity serves as a pivotal health indicator, reflecting the condition of lithium-ion batteries. Accurate forecasting of capacity can ascertain the remaining lifespan of these batteries at any given cycle, which is crucial for managing batteries in electric vehicles. This paper proposes an Autoregression with Exogenous Variables (AREV) model, which continually updates itself through a sliding window, offering predictions of battery state of health and remaining useful life, which extends battery prognostics at a fixed operating condition to different operating conditions. In addition, unlike most models that require multiple battery data of the same type for training, the proposed model only requires the use of fragmented data of the target battery with length around 30-50 cycles for capacity prediction and determines battery life based on battery failure thresholds. The above two points enable this model to be updated online without the need for any offline training. Finally, four different types of battery dataset , with different chemical substances and different charge and discharge conditions (especially dataset that follows random walk discharging profile to stimulate the real power consumption process) , are applied to verify the effectiveness and robustness of proposed RUL prediction approach. It shows that the proposed model can accurately predicting future capacity values. Timely warning signals can be issued before the end of life of battery, thereby ensuring the safe driving of electric vehicles and timely battery replacement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海拾月完成签到,获得积分10
1秒前
自觉从筠发布了新的文献求助10
2秒前
zhangxiao完成签到,获得积分10
2秒前
科研通AI5应助落寞的易绿采纳,获得10
2秒前
2秒前
上官若男应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得30
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
wxyshare应助科研通管家采纳,获得10
3秒前
cherlie应助科研通管家采纳,获得20
3秒前
斯文败类应助邱化兴采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
chenjun7080发布了新的文献求助10
3秒前
今后应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
LPH应助科研通管家采纳,获得30
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
Eva完成签到,获得积分10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得30
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125149
求助须知:如何正确求助?哪些是违规求助? 4329133
关于积分的说明 13490086
捐赠科研通 4163894
什么是DOI,文献DOI怎么找? 2282628
邀请新用户注册赠送积分活动 1283777
关于科研通互助平台的介绍 1223019