A novel prediction approach driven by graph representation learning for heavy metal concentrations

代表(政治) 图形 计算机科学 环境科学 理论计算机科学 政治学 政治 法学
作者
Huijuan Hao,Panpan Li,Ke Li,Yongping Shan,Feng Liu,Naiwen Hu,Bo Zhang,Man Li,Xudong Sang,Xiaotong Xu,Yuntao Lv,Wanming Chen,Wentao Jiao
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:: 174713-174713
标识
DOI:10.1016/j.scitotenv.2024.174713
摘要

The potential risk of heavy metals (HMs) to public health is an issue of great concern. Early prediction is an effective means to reduce the accumulation of HMs. The current prediction methods rarely take internal correlations between environmental factors into consideration, which negatively affects the accuracy of the prediction model and the interpretability of intrinsic mechanisms. Graph representation learning (GraRL) can simultaneously learn the attribute relationships between environmental factors and graph structural information. Herein, we developed the GraRL-HM method to predict the HM concentrations in soil-rice systems. The method consists of two modules, which are PeTPG and GCN-HM. In PeTPG, a graphic structure was generated using graph representation and communitization technology to explore the correlations and transmission paths of different environmental factors. Subsequently, the GCN-HM model based on the graph convolutional neural network (GCN) was used to predict the HM concentrations. The GraRL-HM method was validated by 2295 sets of data covering 21 environmental factors. The results indicated that the PeTPG model simplified correlation paths between factor nodes from 396 to 184, reducing by 53.5 % graph scale by eliminating the invalid paths. The concise and efficient graph structure enhanced the learning efficiency and representation accuracy of downstream prediction models. The GCN-HM model was superior to the four benchmark models in predicting the HM concentration in the crop, improving R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏煜佳完成签到,获得积分10
1秒前
小橘完成签到,获得积分10
1秒前
王宝强的滴滴完成签到,获得积分10
1秒前
Hello应助luofeng采纳,获得20
2秒前
小张发布了新的文献求助10
2秒前
查查发布了新的文献求助10
2秒前
从容松弛完成签到 ,获得积分10
2秒前
所所应助Mtt采纳,获得10
2秒前
共享精神应助过时的台灯采纳,获得10
3秒前
贝贝发布了新的文献求助10
3秒前
赵安安发布了新的文献求助20
3秒前
lz123发布了新的文献求助10
4秒前
稀罕你完成签到,获得积分20
4秒前
玉米大西瓜完成签到 ,获得积分10
4秒前
乐乐应助小周同学采纳,获得10
5秒前
Jerry20184发布了新的文献求助10
5秒前
5秒前
yan完成签到 ,获得积分10
5秒前
大妈发布了新的文献求助10
6秒前
6秒前
anny.white完成签到,获得积分10
6秒前
李爱国应助健壮的如松采纳,获得10
6秒前
Enia完成签到,获得积分10
7秒前
李健的小迷弟应助王贺采纳,获得10
8秒前
芋泥卷的芋泥完成签到,获得积分10
8秒前
weixiaosi完成签到 ,获得积分10
8秒前
Ava应助chen采纳,获得10
8秒前
vlots应助小橘采纳,获得30
8秒前
9秒前
大个应助诸葛半雪采纳,获得10
10秒前
10秒前
Bamboo完成签到 ,获得积分10
10秒前
李多多完成签到,获得积分20
10秒前
圆彰七大发布了新的文献求助10
11秒前
11秒前
11秒前
甜甜哩完成签到,获得积分10
11秒前
12秒前
Jerry20184完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143342
求助须知:如何正确求助?哪些是违规求助? 2794538
关于积分的说明 7811563
捐赠科研通 2450725
什么是DOI,文献DOI怎么找? 1304041
科研通“疑难数据库(出版商)”最低求助积分说明 627160
版权声明 601386