亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel prediction approach driven by graph representation learning for heavy metal concentrations

代表(政治) 图形 计算机科学 环境科学 理论计算机科学 政治学 政治 法学
作者
Huijuan Hao,Panpan Li,Ke Li,Yongping Shan,Feng Liu,Naiwen Hu,Bo Zhang,Man Li,Xudong Sang,Xiaotong Xu,Yuntao Lv,Wanming Chen,Wentao Jiao
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:: 174713-174713
标识
DOI:10.1016/j.scitotenv.2024.174713
摘要

The potential risk of heavy metals (HMs) to public health is an issue of great concern. Early prediction is an effective means to reduce the accumulation of HMs. The current prediction methods rarely take internal correlations between environmental factors into consideration, which negatively affects the accuracy of the prediction model and the interpretability of intrinsic mechanisms. Graph representation learning (GraRL) can simultaneously learn the attribute relationships between environmental factors and graph structural information. Herein, we developed the GraRL-HM method to predict the HM concentrations in soil-rice systems. The method consists of two modules, which are PeTPG and GCN-HM. In PeTPG, a graphic structure was generated using graph representation and communitization technology to explore the correlations and transmission paths of different environmental factors. Subsequently, the GCN-HM model based on the graph convolutional neural network (GCN) was used to predict the HM concentrations. The GraRL-HM method was validated by 2295 sets of data covering 21 environmental factors. The results indicated that the PeTPG model simplified correlation paths between factor nodes from 396 to 184, reducing by 53.5 % graph scale by eliminating the invalid paths. The concise and efficient graph structure enhanced the learning efficiency and representation accuracy of downstream prediction models. The GCN-HM model was superior to the four benchmark models in predicting the HM concentration in the crop, improving R

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DocChen发布了新的文献求助10
6秒前
faith发布了新的文献求助10
7秒前
丁静完成签到 ,获得积分0
15秒前
lanxinge完成签到 ,获得积分10
38秒前
Owen应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
共享精神应助ceeray23采纳,获得20
1分钟前
我是老大应助ceeray23采纳,获得20
1分钟前
丘比特应助ceeray23采纳,获得20
1分钟前
李健应助ceeray23采纳,获得20
1分钟前
慕青应助ceeray23采纳,获得20
1分钟前
xiaoyuan发布了新的文献求助10
1分钟前
2分钟前
Alisha完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
小鹿发布了新的文献求助10
3分钟前
情怀应助小鹿采纳,获得10
3分钟前
Akim应助ceeray23采纳,获得20
3分钟前
trophozoite完成签到 ,获得积分10
3分钟前
juan完成签到 ,获得积分0
4分钟前
丘比特应助ceeray23采纳,获得20
4分钟前
科研通AI2S应助ceeray23采纳,获得20
4分钟前
shepherd应助ceeray23采纳,获得20
4分钟前
香蕉觅云应助ceeray23采纳,获得20
4分钟前
吴静完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助20
4分钟前
4分钟前
跳跳虎完成签到 ,获得积分10
4分钟前
领导范儿应助光能使者采纳,获得10
5分钟前
LeoBigman完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
光能使者发布了新的文献求助10
5分钟前
戴云溥应助ceeray23采纳,获得20
6分钟前
平常安雁完成签到 ,获得积分10
6分钟前
6分钟前
白日睡觉发布了新的文献求助10
6分钟前
wanci应助白日睡觉采纳,获得10
6分钟前
从容芮完成签到,获得积分0
6分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584770
求助须知:如何正确求助?哪些是违规求助? 4668652
关于积分的说明 14771555
捐赠科研通 4613838
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499078
关于科研通互助平台的介绍 1467523