A novel prediction approach driven by graph representation learning for heavy metal concentrations

代表(政治) 图形 计算机科学 环境科学 理论计算机科学 政治学 政治 法学
作者
Huijuan Hao,Panpan Li,Ke Li,Yongping Shan,Feng Liu,Naiwen Hu,Bo Zhang,Man Li,Xudong Sang,Xiaotong Xu,Yuntao Lv,Wanming Chen,Wentao Jiao
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:: 174713-174713
标识
DOI:10.1016/j.scitotenv.2024.174713
摘要

The potential risk of heavy metals (HMs) to public health is an issue of great concern. Early prediction is an effective means to reduce the accumulation of HMs. The current prediction methods rarely take internal correlations between environmental factors into consideration, which negatively affects the accuracy of the prediction model and the interpretability of intrinsic mechanisms. Graph representation learning (GraRL) can simultaneously learn the attribute relationships between environmental factors and graph structural information. Herein, we developed the GraRL-HM method to predict the HM concentrations in soil-rice systems. The method consists of two modules, which are PeTPG and GCN-HM. In PeTPG, a graphic structure was generated using graph representation and communitization technology to explore the correlations and transmission paths of different environmental factors. Subsequently, the GCN-HM model based on the graph convolutional neural network (GCN) was used to predict the HM concentrations. The GraRL-HM method was validated by 2295 sets of data covering 21 environmental factors. The results indicated that the PeTPG model simplified correlation paths between factor nodes from 396 to 184, reducing by 53.5 % graph scale by eliminating the invalid paths. The concise and efficient graph structure enhanced the learning efficiency and representation accuracy of downstream prediction models. The GCN-HM model was superior to the four benchmark models in predicting the HM concentration in the crop, improving R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
meiqiu发布了新的文献求助10
2秒前
轻舞飞扬发布了新的文献求助10
2秒前
笑笑二儿完成签到,获得积分20
3秒前
称心不尤完成签到 ,获得积分10
3秒前
4秒前
4秒前
危机的香萱完成签到,获得积分10
6秒前
kings完成签到,获得积分10
6秒前
7秒前
乐观的雨应助小胖采纳,获得10
8秒前
上官若男应助无语的寒天采纳,获得10
8秒前
9秒前
学术通zzz应助SZK采纳,获得50
10秒前
完美世界应助lee采纳,获得10
11秒前
能干砖家完成签到,获得积分10
12秒前
伶俐楷瑞完成签到,获得积分10
13秒前
可怜的游戏完成签到,获得积分10
13秒前
zzzzz完成签到,获得积分10
13秒前
天天快乐应助zz采纳,获得10
13秒前
老实乌冬面完成签到 ,获得积分10
13秒前
13秒前
美丽映容完成签到 ,获得积分10
14秒前
zzt发布了新的文献求助10
15秒前
英吉利25发布了新的文献求助10
16秒前
liuzhanyu发布了新的文献求助30
16秒前
16秒前
彭于晏应助酷酷的西装采纳,获得10
16秒前
Aowu完成签到,获得积分10
16秒前
棋士发布了新的文献求助10
17秒前
17秒前
努力生活的小柴完成签到,获得积分10
18秒前
18秒前
19秒前
fool完成签到,获得积分10
19秒前
Mano完成签到,获得积分10
19秒前
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993