A novel prediction approach driven by graph representation learning for heavy metal concentrations

代表(政治) 图形 计算机科学 环境科学 理论计算机科学 政治学 政治 法学
作者
Huijuan Hao,Panpan Li,Ke Li,Yongping Shan,Feng Liu,Naiwen Hu,Bo Zhang,Man Li,Xudong Sang,Xiaotong Xu,Yuntao Lv,Wanming Chen,Wentao Jiao
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:: 174713-174713
标识
DOI:10.1016/j.scitotenv.2024.174713
摘要

The potential risk of heavy metals (HMs) to public health is an issue of great concern. Early prediction is an effective means to reduce the accumulation of HMs. The current prediction methods rarely take internal correlations between environmental factors into consideration, which negatively affects the accuracy of the prediction model and the interpretability of intrinsic mechanisms. Graph representation learning (GraRL) can simultaneously learn the attribute relationships between environmental factors and graph structural information. Herein, we developed the GraRL-HM method to predict the HM concentrations in soil-rice systems. The method consists of two modules, which are PeTPG and GCN-HM. In PeTPG, a graphic structure was generated using graph representation and communitization technology to explore the correlations and transmission paths of different environmental factors. Subsequently, the GCN-HM model based on the graph convolutional neural network (GCN) was used to predict the HM concentrations. The GraRL-HM method was validated by 2295 sets of data covering 21 environmental factors. The results indicated that the PeTPG model simplified correlation paths between factor nodes from 396 to 184, reducing by 53.5 % graph scale by eliminating the invalid paths. The concise and efficient graph structure enhanced the learning efficiency and representation accuracy of downstream prediction models. The GCN-HM model was superior to the four benchmark models in predicting the HM concentration in the crop, improving R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang001应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
lorieeee发布了新的文献求助10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Raisin完成签到,获得积分10
1秒前
1秒前
1秒前
Lucas应助苹果语梦采纳,获得10
1秒前
彭于彦祖应助LOFATIN采纳,获得40
2秒前
纪俊辰发布了新的文献求助10
2秒前
2秒前
英俊白莲发布了新的文献求助10
2秒前
3秒前
Xq321pX发布了新的文献求助10
3秒前
李健应助Zlj采纳,获得10
3秒前
慈祥的不愁完成签到 ,获得积分10
4秒前
小蘑菇发布了新的文献求助10
5秒前
Yeyuntian完成签到,获得积分10
5秒前
NexusExplorer应助酷酷的书蝶采纳,获得10
5秒前
5秒前
莉莉安发布了新的文献求助10
6秒前
6秒前
Owen应助Tong采纳,获得10
6秒前
6秒前
7秒前
7秒前
CipherSage应助英俊白莲采纳,获得10
7秒前
姚芭蕉发布了新的文献求助10
8秒前
cc完成签到,获得积分10
8秒前
天天快乐应助缓慢易云采纳,获得10
8秒前
8秒前
8秒前
高分求助中
All the Birds of the World 3000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3719069
求助须知:如何正确求助?哪些是违规求助? 3265623
关于积分的说明 9939706
捐赠科研通 2979326
什么是DOI,文献DOI怎么找? 1634046
邀请新用户注册赠送积分活动 775479
科研通“疑难数据库(出版商)”最低求助积分说明 745686