A novel prediction approach driven by graph representation learning for heavy metal concentrations

代表(政治) 图形 计算机科学 环境科学 理论计算机科学 政治学 政治 法学
作者
Huijuan Hao,Panpan Li,Ke Li,Yongping Shan,Feng Liu,Naiwen Hu,Bo Zhang,Man Li,Xudong Sang,Xiaotong Xu,Yuntao Lv,Wanming Chen,Wentao Jiao
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:: 174713-174713
标识
DOI:10.1016/j.scitotenv.2024.174713
摘要

The potential risk of heavy metals (HMs) to public health is an issue of great concern. Early prediction is an effective means to reduce the accumulation of HMs. The current prediction methods rarely take internal correlations between environmental factors into consideration, which negatively affects the accuracy of the prediction model and the interpretability of intrinsic mechanisms. Graph representation learning (GraRL) can simultaneously learn the attribute relationships between environmental factors and graph structural information. Herein, we developed the GraRL-HM method to predict the HM concentrations in soil-rice systems. The method consists of two modules, which are PeTPG and GCN-HM. In PeTPG, a graphic structure was generated using graph representation and communitization technology to explore the correlations and transmission paths of different environmental factors. Subsequently, the GCN-HM model based on the graph convolutional neural network (GCN) was used to predict the HM concentrations. The GraRL-HM method was validated by 2295 sets of data covering 21 environmental factors. The results indicated that the PeTPG model simplified correlation paths between factor nodes from 396 to 184, reducing by 53.5 % graph scale by eliminating the invalid paths. The concise and efficient graph structure enhanced the learning efficiency and representation accuracy of downstream prediction models. The GCN-HM model was superior to the four benchmark models in predicting the HM concentration in the crop, improving R

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
宏哥完成签到,获得积分10
刚刚
lzhe完成签到,获得积分10
1秒前
小仙女完成签到,获得积分10
1秒前
zqingqing完成签到,获得积分10
1秒前
lawang发布了新的文献求助10
1秒前
gegi完成签到,获得积分10
2秒前
团团完成签到,获得积分10
2秒前
潇洒台灯发布了新的文献求助10
2秒前
zhuzhu发布了新的文献求助10
2秒前
hkh发布了新的文献求助10
2秒前
cttc完成签到,获得积分10
3秒前
李健应助yyyyyyy111采纳,获得10
3秒前
lilikou发布了新的文献求助10
3秒前
兔兔完成签到,获得积分10
3秒前
3秒前
小鬼完成签到 ,获得积分10
3秒前
华山完成签到,获得积分10
4秒前
从容的狗发布了新的文献求助10
5秒前
赛妮完成签到,获得积分10
5秒前
栗子芸完成签到,获得积分10
5秒前
yqcj59完成签到,获得积分10
6秒前
张宁波完成签到,获得积分0
6秒前
zpz完成签到 ,获得积分10
6秒前
冯佳祥完成签到,获得积分10
7秒前
clock完成签到 ,获得积分10
7秒前
Bioflying完成签到,获得积分10
7秒前
jingyuemingqiu完成签到 ,获得积分10
7秒前
7秒前
金翎完成签到 ,获得积分10
8秒前
8秒前
精明手机完成签到,获得积分10
9秒前
Akim应助吞金小怪兽采纳,获得10
10秒前
顺利的藏今完成签到,获得积分10
10秒前
LXX-k完成签到,获得积分10
11秒前
Llllllxxxxxxx完成签到,获得积分10
11秒前
wbb完成签到 ,获得积分10
12秒前
llyu完成签到,获得积分10
12秒前
无情的薯片完成签到,获得积分10
12秒前
buffer完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651622
求助须知:如何正确求助?哪些是违规求助? 4785400
关于积分的说明 15054736
捐赠科研通 4810228
什么是DOI,文献DOI怎么找? 2573047
邀请新用户注册赠送积分活动 1528941
关于科研通互助平台的介绍 1487934