已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DBAII-Net with multiscale feature aggregation and cross-modal attention for enhancing infant brain injury classification in MRI

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 机器学习 数据挖掘
作者
Zhen Jia,Tingting Huang,Xianjun Li,Yitong Bian,Li Wang,Jian‐Min Yuan,Guanghua Xu,Jian Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/ad80f7
摘要

Abstract Objectives. MRI is pivotal in diagnosing brain injuries in infants. However, the dynamic development of the brain introduces variability in infant MRI characteristics, posing challenges for MRI-based classification in this population. Furthermore, manual data selection in large-scale studies is labor-intensive, and existing algorithms often underperform with thick-slice MRI data. To enhance research efficiency and classification accuracy in large datasets, we propose an advanced classification model. Approach. We introduce the Dual-Branch Attention Information Interactive Neural Network (DBAII-Net), a cutting-edge model inspired by radiologists' use of multiple MRI sequences. DBAII-Net features two innovative modules: (1) the Convolutional Enhancement Module (CEM), which leverages advanced convolutional techniques to aggregate multi-scale features, significantly enhancing information representation; and (2) the Cross-Modal Attention Module (CMAM), which employs state-of-the-art attention mechanisms to fuse data across branches, dramatically improving positional and channel feature extraction. Performances (accuracy, sensitivity, specificity, area under the curve, etc.) of DBAII-Net were compared with eight benchmark models for brain MRI classification in infants aged 6 months to 2 years. Main results. Utilizing a self-constructed dataset of 240 thick-slice brain MRI scans (122 with brain injuries, 118 without), DBAII-Net demonstrated superior performance. On a test set of approximately 50 cases, DBAII-Net achieved average performance metrics of 92.53% accuracy, 90.20% sensitivity, 94.93% specificity, and an area under the curve (AUC) of 0.9603. Ablation studies confirmed the effectiveness of CEM and CMAM, with CMAM significantly boosting classification metrics. Significance. DBAII-Net with CEM and CMAM outperforms existing benchmarks in enhancing the precision of brain MRI classification in infants, significantly reducing manual effort in infant brain research. Our code is available at https://github.com/jiazhen4585/DBAII-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祭酒完成签到 ,获得积分10
1秒前
小杜完成签到 ,获得积分10
3秒前
wuii完成签到,获得积分20
4秒前
kaku完成签到,获得积分10
4秒前
6秒前
科研通AI2S应助啦啦啦采纳,获得10
9秒前
keep1997发布了新的文献求助10
10秒前
冷静的莞完成签到 ,获得积分10
11秒前
赘婿应助凶狠的猎豹采纳,获得10
15秒前
从容松弛完成签到 ,获得积分10
17秒前
19秒前
ymxlcfc完成签到 ,获得积分10
21秒前
wentong完成签到,获得积分10
21秒前
25秒前
lllwww完成签到 ,获得积分10
28秒前
西罗应助子车谷波采纳,获得10
30秒前
31秒前
33秒前
35秒前
13209927526完成签到,获得积分20
39秒前
852应助专一的绮露采纳,获得10
39秒前
王富贵完成签到,获得积分10
39秒前
CipherSage应助科研通管家采纳,获得30
41秒前
小马甲应助科研通管家采纳,获得10
41秒前
田様应助科研通管家采纳,获得10
41秒前
41秒前
45秒前
不辣的完成签到 ,获得积分10
48秒前
48秒前
49秒前
xiongqi完成签到 ,获得积分10
54秒前
易燃小香香完成签到,获得积分20
54秒前
54秒前
54秒前
DagrZheng发布了新的文献求助200
55秒前
yyr完成签到 ,获得积分10
58秒前
8R60d8应助震动的机器猫采纳,获得10
59秒前
1分钟前
SciGPT应助安详跳跳糖采纳,获得10
1分钟前
xxxxyyyy1完成签到 ,获得积分10
1分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139400
求助须知:如何正确求助?哪些是违规求助? 2790324
关于积分的说明 7795000
捐赠科研通 2446805
什么是DOI,文献DOI怎么找? 1301366
科研通“疑难数据库(出版商)”最低求助积分说明 626171
版权声明 601141