已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DBAII-Net with multiscale feature aggregation and cross-modal attention for enhancing infant brain injury classification in MRI

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 机器学习 数据挖掘
作者
Zhen Jia,Tingting Huang,Xianjun Li,Yitong Bian,Fan Wang,Jian‐Min Yuan,Guanghua Xu,Jian Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (20): 205017-205017
标识
DOI:10.1088/1361-6560/ad80f7
摘要

Abstract Objectives. Magnetic resonance imaging (MRI) is pivotal in diagnosing brain injuries in infants. However, the dynamic development of the brain introduces variability in infant MRI characteristics, posing challenges for MRI-based classification in this population. Furthermore, manual data selection in large-scale studies is labor-intensive, and existing algorithms often underperform with thick-slice MRI data. To enhance research efficiency and classification accuracy in large datasets, we propose an advanced classification model. Approach. We introduce the Dual-Branch Attention Information Interactive Neural Network (DBAII-Net), a cutting-edge model inspired by radiologists’ use of multiple MRI sequences. DBAII-Net features two innovative modules: (1) the convolutional enhancement module (CEM), which leverages advanced convolutional techniques to aggregate multi-scale features, significantly enhancing information representation; and (2) the cross-modal attention module (CMAM), which employs state-of-the-art attention mechanisms to fuse data across branches, dramatically improving positional and channel feature extraction. Performances (accuracy, sensitivity, specificity, area under the curve (AUC), etc) of DBAII-Net were compared with eight benchmark models for brain MRI classification in infants aged 6 months to 2 years. Main results. Utilizing a self-constructed dataset of 240 thick-slice brain MRI scans (122 with brain injuries, 118 without), DBAII-Net demonstrated superior performance. On a test set of approximately 50 cases, DBAII-Net achieved average performance metrics of 92.53% accuracy, 90.20% sensitivity, 94.93% specificity, and an AUC of 0.9603. Ablation studies confirmed the effectiveness of CEM and CMAM, with CMAM significantly boosting classification metrics. Significance. DBAII-Net with CEM and CMAM outperforms existing benchmarks in enhancing the precision of brain MRI classification in infants, significantly reducing manual effort in infant brain research. Our code is available at https://github.com/jiazhen4585/DBAII-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助poohpooh采纳,获得10
1秒前
corner发布了新的文献求助10
1秒前
研友_VZG7GZ应助dly采纳,获得10
2秒前
善学以致用应助mimimi采纳,获得10
2秒前
ndue678发布了新的文献求助10
4秒前
Marco_hxkq发布了新的文献求助10
5秒前
求助发布了新的文献求助10
5秒前
5秒前
开拓者完成签到,获得积分10
5秒前
科目三应助李一菲采纳,获得10
6秒前
6秒前
6秒前
顺心的笑翠完成签到,获得积分10
7秒前
研友_VZG7GZ应助无端采纳,获得10
7秒前
8秒前
8秒前
xinxin666发布了新的文献求助10
9秒前
许阳发布了新的文献求助10
9秒前
吴DrYDYY完成签到 ,获得积分10
9秒前
9秒前
万能图书馆应助张无缺采纳,获得10
11秒前
清脆遥发布了新的文献求助10
12秒前
LIM完成签到,获得积分10
12秒前
飲啖茶发布了新的文献求助50
14秒前
dly发布了新的文献求助10
14秒前
求助完成签到,获得积分10
15秒前
快乐树叶完成签到,获得积分10
16秒前
16秒前
17秒前
bkagyin应助涨涨涨采纳,获得10
17秒前
18秒前
奥奥完成签到 ,获得积分10
22秒前
斯文明杰发布了新的文献求助10
22秒前
24秒前
25秒前
李发财完成签到 ,获得积分10
25秒前
朴素代芹完成签到 ,获得积分10
26秒前
天真慕灵发布了新的文献求助10
27秒前
易子完成签到 ,获得积分10
27秒前
无花果应助YY采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062734
求助须知:如何正确求助?哪些是违规求助? 4286445
关于积分的说明 13357088
捐赠科研通 4104266
什么是DOI,文献DOI怎么找? 2247395
邀请新用户注册赠送积分活动 1252983
关于科研通互助平台的介绍 1183935