亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DBAII-Net with multiscale feature aggregation and cross-modal attention for enhancing infant brain injury classification in MRI

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 机器学习 数据挖掘
作者
Zhen Jia,Tingting Huang,Xianjun Li,Yitong Bian,Fan Wang,Jian‐Min Yuan,Guanghua Xu,Jian Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (20): 205017-205017
标识
DOI:10.1088/1361-6560/ad80f7
摘要

Abstract Objectives. Magnetic resonance imaging (MRI) is pivotal in diagnosing brain injuries in infants. However, the dynamic development of the brain introduces variability in infant MRI characteristics, posing challenges for MRI-based classification in this population. Furthermore, manual data selection in large-scale studies is labor-intensive, and existing algorithms often underperform with thick-slice MRI data. To enhance research efficiency and classification accuracy in large datasets, we propose an advanced classification model. Approach. We introduce the Dual-Branch Attention Information Interactive Neural Network (DBAII-Net), a cutting-edge model inspired by radiologists’ use of multiple MRI sequences. DBAII-Net features two innovative modules: (1) the convolutional enhancement module (CEM), which leverages advanced convolutional techniques to aggregate multi-scale features, significantly enhancing information representation; and (2) the cross-modal attention module (CMAM), which employs state-of-the-art attention mechanisms to fuse data across branches, dramatically improving positional and channel feature extraction. Performances (accuracy, sensitivity, specificity, area under the curve (AUC), etc) of DBAII-Net were compared with eight benchmark models for brain MRI classification in infants aged 6 months to 2 years. Main results. Utilizing a self-constructed dataset of 240 thick-slice brain MRI scans (122 with brain injuries, 118 without), DBAII-Net demonstrated superior performance. On a test set of approximately 50 cases, DBAII-Net achieved average performance metrics of 92.53% accuracy, 90.20% sensitivity, 94.93% specificity, and an AUC of 0.9603. Ablation studies confirmed the effectiveness of CEM and CMAM, with CMAM significantly boosting classification metrics. Significance. DBAII-Net with CEM and CMAM outperforms existing benchmarks in enhancing the precision of brain MRI classification in infants, significantly reducing manual effort in infant brain research. Our code is available at https://github.com/jiazhen4585/DBAII-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LiangRen完成签到 ,获得积分10
5秒前
超级的路人完成签到,获得积分20
7秒前
9秒前
风趣的梦露完成签到 ,获得积分10
13秒前
一个西藏发布了新的文献求助10
14秒前
17秒前
雅雅完成签到 ,获得积分10
19秒前
24秒前
大个应助个性半山采纳,获得10
28秒前
搜集达人应助william采纳,获得10
32秒前
34秒前
Lieme_7完成签到,获得积分10
35秒前
36秒前
思源应助Simone采纳,获得10
36秒前
大乔发布了新的文献求助30
38秒前
个性半山发布了新的文献求助10
42秒前
42秒前
Zert发布了新的文献求助10
43秒前
48秒前
51秒前
Simone发布了新的文献求助10
52秒前
HTniconico完成签到 ,获得积分10
54秒前
56秒前
william发布了新的文献求助10
57秒前
琳io发布了新的文献求助10
1分钟前
山野完成签到 ,获得积分10
1分钟前
Jasper应助Harrison采纳,获得10
1分钟前
1分钟前
william完成签到,获得积分10
1分钟前
kong发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
neversay4ever完成签到 ,获得积分10
1分钟前
棠梨子完成签到,获得积分10
1分钟前
1分钟前
IdleDoc发布了新的文献求助10
1分钟前
琪凯定理发布了新的文献求助10
1分钟前
碳酸芙兰完成签到,获得积分10
1分钟前
kong完成签到,获得积分10
1分钟前
传奇3应助壮观沉鱼采纳,获得10
1分钟前
酷波er应助IdleDoc采纳,获得10
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345828
求助须知:如何正确求助?哪些是违规求助? 4480635
关于积分的说明 13946596
捐赠科研通 4378236
什么是DOI,文献DOI怎么找? 2405725
邀请新用户注册赠送积分活动 1398272
关于科研通互助平台的介绍 1370786