亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DBAII-Net with multiscale feature aggregation and cross-modal attention for enhancing infant brain injury classification in MRI

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 机器学习 数据挖掘
作者
Zhen Jia,Tingting Huang,Xianjun Li,Yitong Bian,Fan Wang,Jian‐Min Yuan,Guanghua Xu,Jian Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (20): 205017-205017
标识
DOI:10.1088/1361-6560/ad80f7
摘要

Abstract Objectives. Magnetic resonance imaging (MRI) is pivotal in diagnosing brain injuries in infants. However, the dynamic development of the brain introduces variability in infant MRI characteristics, posing challenges for MRI-based classification in this population. Furthermore, manual data selection in large-scale studies is labor-intensive, and existing algorithms often underperform with thick-slice MRI data. To enhance research efficiency and classification accuracy in large datasets, we propose an advanced classification model. Approach. We introduce the Dual-Branch Attention Information Interactive Neural Network (DBAII-Net), a cutting-edge model inspired by radiologists’ use of multiple MRI sequences. DBAII-Net features two innovative modules: (1) the convolutional enhancement module (CEM), which leverages advanced convolutional techniques to aggregate multi-scale features, significantly enhancing information representation; and (2) the cross-modal attention module (CMAM), which employs state-of-the-art attention mechanisms to fuse data across branches, dramatically improving positional and channel feature extraction. Performances (accuracy, sensitivity, specificity, area under the curve (AUC), etc) of DBAII-Net were compared with eight benchmark models for brain MRI classification in infants aged 6 months to 2 years. Main results. Utilizing a self-constructed dataset of 240 thick-slice brain MRI scans (122 with brain injuries, 118 without), DBAII-Net demonstrated superior performance. On a test set of approximately 50 cases, DBAII-Net achieved average performance metrics of 92.53% accuracy, 90.20% sensitivity, 94.93% specificity, and an AUC of 0.9603. Ablation studies confirmed the effectiveness of CEM and CMAM, with CMAM significantly boosting classification metrics. Significance. DBAII-Net with CEM and CMAM outperforms existing benchmarks in enhancing the precision of brain MRI classification in infants, significantly reducing manual effort in infant brain research. Our code is available at https://github.com/jiazhen4585/DBAII-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SPLjoker完成签到 ,获得积分10
2秒前
Wsssss完成签到,获得积分10
4秒前
奋斗的暖阳完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得30
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
ZL完成签到 ,获得积分10
11秒前
16秒前
Diamond完成签到 ,获得积分10
20秒前
平淡如天发布了新的文献求助10
21秒前
JamesPei应助平淡如天采纳,获得10
32秒前
余念安完成签到 ,获得积分10
37秒前
46秒前
47秒前
El发布了新的文献求助10
53秒前
某个不想做人的dio完成签到 ,获得积分10
55秒前
冷静新烟发布了新的文献求助10
57秒前
Eden完成签到,获得积分10
58秒前
1分钟前
烟花应助灵感大王喵采纳,获得200
1分钟前
夏夏完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
潘善若发布了新的文献求助10
1分钟前
田様应助El采纳,获得10
1分钟前
隔壁巷子里的劉完成签到 ,获得积分10
1分钟前
李爱国应助潘善若采纳,获得10
1分钟前
1分钟前
五十一完成签到 ,获得积分10
1分钟前
奇遇完成签到 ,获得积分10
1分钟前
1分钟前
含糊的安柏完成签到,获得积分10
1分钟前
huihongzeng发布了新的文献求助10
1分钟前
NexusExplorer应助含糊的安柏采纳,获得10
1分钟前
2分钟前
冷静新烟完成签到,获得积分20
2分钟前
冷静新烟发布了新的文献求助10
2分钟前
简单山水发布了新的文献求助10
2分钟前
Novajet完成签到,获得积分10
2分钟前
yx_cheng应助归海浩阑采纳,获得30
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532077
关于积分的说明 11256227
捐赠科研通 3270933
什么是DOI,文献DOI怎么找? 1805139
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228