已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DBAII-Net with multiscale feature aggregation and cross-modal attention for enhancing infant brain injury classification in MRI

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 机器学习 数据挖掘
作者
Zhen Jia,Tingting Huang,Xianjun Li,Yitong Bian,Fan Wang,Jian‐Min Yuan,Guanghua Xu,Jian Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (20): 205017-205017
标识
DOI:10.1088/1361-6560/ad80f7
摘要

Abstract Objectives. Magnetic resonance imaging (MRI) is pivotal in diagnosing brain injuries in infants. However, the dynamic development of the brain introduces variability in infant MRI characteristics, posing challenges for MRI-based classification in this population. Furthermore, manual data selection in large-scale studies is labor-intensive, and existing algorithms often underperform with thick-slice MRI data. To enhance research efficiency and classification accuracy in large datasets, we propose an advanced classification model. Approach. We introduce the Dual-Branch Attention Information Interactive Neural Network (DBAII-Net), a cutting-edge model inspired by radiologists’ use of multiple MRI sequences. DBAII-Net features two innovative modules: (1) the convolutional enhancement module (CEM), which leverages advanced convolutional techniques to aggregate multi-scale features, significantly enhancing information representation; and (2) the cross-modal attention module (CMAM), which employs state-of-the-art attention mechanisms to fuse data across branches, dramatically improving positional and channel feature extraction. Performances (accuracy, sensitivity, specificity, area under the curve (AUC), etc) of DBAII-Net were compared with eight benchmark models for brain MRI classification in infants aged 6 months to 2 years. Main results. Utilizing a self-constructed dataset of 240 thick-slice brain MRI scans (122 with brain injuries, 118 without), DBAII-Net demonstrated superior performance. On a test set of approximately 50 cases, DBAII-Net achieved average performance metrics of 92.53% accuracy, 90.20% sensitivity, 94.93% specificity, and an AUC of 0.9603. Ablation studies confirmed the effectiveness of CEM and CMAM, with CMAM significantly boosting classification metrics. Significance. DBAII-Net with CEM and CMAM outperforms existing benchmarks in enhancing the precision of brain MRI classification in infants, significantly reducing manual effort in infant brain research. Our code is available at https://github.com/jiazhen4585/DBAII-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LELE完成签到 ,获得积分10
3秒前
4秒前
5秒前
细腻鸭子发布了新的文献求助10
6秒前
雪酪芋泥球完成签到 ,获得积分10
6秒前
6秒前
明澜完成签到 ,获得积分20
7秒前
wisher完成签到 ,获得积分10
7秒前
8秒前
发呆发布了新的文献求助30
9秒前
CodeCraft应助啊啊啊啊啊苏采纳,获得10
9秒前
情怀应助111111采纳,获得10
10秒前
帅帅发布了新的文献求助10
11秒前
幸符完成签到 ,获得积分10
14秒前
14秒前
dream完成签到 ,获得积分10
15秒前
尼美舒利完成签到 ,获得积分10
15秒前
SZU_Julian完成签到,获得积分10
15秒前
16秒前
17秒前
刻苦藏今完成签到,获得积分10
19秒前
A.y.w完成签到,获得积分10
20秒前
111111完成签到,获得积分20
20秒前
明澜发布了新的文献求助10
22秒前
蛋堡完成签到 ,获得积分10
22秒前
科研通AI5应助wangmomo1983采纳,获得10
23秒前
王辰宁完成签到,获得积分10
23秒前
科研通AI5应助帅帅采纳,获得10
25秒前
开放沛柔完成签到 ,获得积分10
28秒前
大鸟依人发布了新的文献求助10
29秒前
sam完成签到,获得积分10
29秒前
自由寻冬完成签到 ,获得积分10
31秒前
王w完成签到 ,获得积分10
32秒前
小帅完成签到 ,获得积分10
33秒前
專注完美近乎苛求完成签到 ,获得积分10
33秒前
FashionBoy应助尼美舒利采纳,获得10
34秒前
cc完成签到,获得积分10
35秒前
泶1完成签到,获得积分10
36秒前
37秒前
Luna爱科研完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610218
求助须知:如何正确求助?哪些是违规求助? 4016237
关于积分的说明 12434819
捐赠科研通 3697797
什么是DOI,文献DOI怎么找? 2038994
邀请新用户注册赠送积分活动 1071906
科研通“疑难数据库(出版商)”最低求助积分说明 955582