DBAII-Net with multiscale feature aggregation and cross-modal attention for enhancing infant brain injury classification in MRI

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 机器学习 数据挖掘
作者
Zhen Jia,Tingting Huang,Xianjun Li,Yitong Bian,Li Wang,Jian‐Min Yuan,Guanghua Xu,Jian Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (20): 205017-205017
标识
DOI:10.1088/1361-6560/ad80f7
摘要

Abstract Objectives. Magnetic resonance imaging (MRI) is pivotal in diagnosing brain injuries in infants. However, the dynamic development of the brain introduces variability in infant MRI characteristics, posing challenges for MRI-based classification in this population. Furthermore, manual data selection in large-scale studies is labor-intensive, and existing algorithms often underperform with thick-slice MRI data. To enhance research efficiency and classification accuracy in large datasets, we propose an advanced classification model. Approach. We introduce the Dual-Branch Attention Information Interactive Neural Network (DBAII-Net), a cutting-edge model inspired by radiologists’ use of multiple MRI sequences. DBAII-Net features two innovative modules: (1) the convolutional enhancement module (CEM), which leverages advanced convolutional techniques to aggregate multi-scale features, significantly enhancing information representation; and (2) the cross-modal attention module (CMAM), which employs state-of-the-art attention mechanisms to fuse data across branches, dramatically improving positional and channel feature extraction. Performances (accuracy, sensitivity, specificity, area under the curve (AUC), etc) of DBAII-Net were compared with eight benchmark models for brain MRI classification in infants aged 6 months to 2 years. Main results. Utilizing a self-constructed dataset of 240 thick-slice brain MRI scans (122 with brain injuries, 118 without), DBAII-Net demonstrated superior performance. On a test set of approximately 50 cases, DBAII-Net achieved average performance metrics of 92.53% accuracy, 90.20% sensitivity, 94.93% specificity, and an AUC of 0.9603. Ablation studies confirmed the effectiveness of CEM and CMAM, with CMAM significantly boosting classification metrics. Significance. DBAII-Net with CEM and CMAM outperforms existing benchmarks in enhancing the precision of brain MRI classification in infants, significantly reducing manual effort in infant brain research. Our code is available at https://github.com/jiazhen4585/DBAII-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李哈哈发布了新的文献求助10
刚刚
刚刚
1秒前
WQ发布了新的文献求助10
4秒前
沉静亦寒完成签到,获得积分10
4秒前
汉堡包应助锌小子采纳,获得10
5秒前
陈住气发布了新的文献求助10
5秒前
LX完成签到,获得积分10
5秒前
哩哩发布了新的文献求助10
7秒前
充电宝应助沐颜采纳,获得10
8秒前
给刘宇宁的粉丝一篇文献吧完成签到,获得积分10
8秒前
Owen应助金石为开采纳,获得10
9秒前
10秒前
AQ发布了新的文献求助10
10秒前
yy完成签到,获得积分20
10秒前
NL完成签到,获得积分10
11秒前
12秒前
可爱的函函应助wz采纳,获得10
12秒前
bonne_nuit完成签到,获得积分10
13秒前
领导范儿应助帆楼采纳,获得10
15秒前
16秒前
22秒前
英俊的铭应助RichieXU采纳,获得10
22秒前
科研通AI2S应助yangxt-iga采纳,获得10
22秒前
Jasper应助一个小胖子采纳,获得10
22秒前
22秒前
我爱自由民权完成签到,获得积分10
22秒前
22秒前
ling2001完成签到,获得积分10
23秒前
传奇3应助Aisha采纳,获得10
23秒前
马敏发布了新的文献求助10
25秒前
25秒前
26秒前
26秒前
27秒前
wz完成签到,获得积分20
27秒前
Robinson发布了新的文献求助10
27秒前
半霜完成签到 ,获得积分10
28秒前
发财小高发布了新的文献求助10
28秒前
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770132
求助须知:如何正确求助?哪些是违规求助? 3315213
关于积分的说明 10174886
捐赠科研通 3030256
什么是DOI,文献DOI怎么找? 1662790
邀请新用户注册赠送积分活动 795095
科研通“疑难数据库(出版商)”最低求助积分说明 756560