亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Beyond the Parts: Learning Coarse-to-Fine Adaptive Alignment Representation for Person Search

利用 计算机科学 加权 匹配(统计) 人工智能 代表(政治) 过程(计算) 背景(考古学) 光学(聚焦) 透视图(图形) 任务(项目管理) 特征学习 计算机视觉 模式识别(心理学) 机器学习 数学 工程类 医学 古生物学 统计 物理 计算机安全 光学 系统工程 政治 生物 政治学 法学 放射科 操作系统
作者
Wenxin Huang,Xuemei Jia,Xian Zhong,Xiao Wang,Kui Jiang,Zheng Wang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (3): 1-19 被引量:4
标识
DOI:10.1145/3565886
摘要

Person search is a time-consuming computer vision task that entails locating and recognizing query people in scenic pictures. Body components are commonly mismatched during matching due to position variation, occlusions, and partially absent body parts, resulting in unsatisfactory person search results. Existing approaches for extracting local characteristics of the human body using keypoint information are unable to handle the search job when distinct body parts are misaligned, ignoring to exploit multiple granularities, which is crucial in the person search process. Moreover, the alignment learning methods learn body part features with fixed and equal weights, ignoring the beneficial contextual information, e.g., the umbrella carried by the pedestrian, which supplements compelling clues for identifying the person. In this paper, we propose a Coarse-to-Fine Adaptive Alignment Representation (CFA 2 R) network for learning multiple granular features in misaligned person search in the coarse-to-fine perspective. To exploit more beneficial body parts and related context of the cropped pedestrians, we design a Part-Attentional Progressive Module (PAPM) to guide the network to focus on informative body parts and positive accessorial regions. Besides, we propose a Re-weighting Alignment Module (RAM) shedding light on more contributive parts instead of treating them equally. Specifically, adaptive re-weighted but not fixed part features are reconstructed by Re-weighting Reconstruction module, considering that different parts serve unequally during image matching. Extensive experiments conducted on CUHK-SYSU and PRW datasets demonstrate competitive performance of our proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助沉香续断采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Hvginn完成签到,获得积分10
12秒前
苏子愈完成签到 ,获得积分10
28秒前
动听衬衫完成签到 ,获得积分10
30秒前
动听衬衫完成签到 ,获得积分10
30秒前
动听衬衫完成签到 ,获得积分10
30秒前
31秒前
沉香续断发布了新的文献求助10
37秒前
47秒前
隐形曼青应助结实青丝采纳,获得10
54秒前
孤独蘑菇完成签到 ,获得积分10
57秒前
1分钟前
2分钟前
王骧完成签到,获得积分10
2分钟前
美满信封完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI6.2应助王骧采纳,获得10
2分钟前
2分钟前
2分钟前
606发布了新的文献求助10
2分钟前
淮安石河子完成签到 ,获得积分10
2分钟前
3分钟前
威武采白完成签到 ,获得积分10
3分钟前
火山蜗牛完成签到,获得积分10
3分钟前
情怀应助科研通管家采纳,获得10
4分钟前
情怀应助科研通管家采纳,获得10
4分钟前
马上顺利完成签到,获得积分10
4分钟前
4分钟前
结实青丝发布了新的文献求助10
4分钟前
4分钟前
xl_c完成签到 ,获得积分10
4分钟前
Luke2完成签到 ,获得积分10
4分钟前
香蕉觅云应助柯慕玉泽采纳,获得10
5分钟前
5分钟前
脑洞疼应助只道寻常采纳,获得10
5分钟前
陶醉的烤鸡完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870815
求助须知:如何正确求助?哪些是违规求助? 6468169
关于积分的说明 15665055
捐赠科研通 4987063
什么是DOI,文献DOI怎么找? 2689150
邀请新用户注册赠送积分活动 1631491
关于科研通互助平台的介绍 1589535