蒙特卡罗方法
数学
弧(几何)
核医学
物理
统计
医学
几何学
作者
Chuan He,Ankit Pant,Anh Lê
摘要
To evaluate the impact of the Acuros XB spatial discretization errors on ArcCHECK volumetric modulated arc therapy (VMAT) QA for small-field SBRT plans.Eighteen SBRT VMAT arcs that failed the ArcCHECK VMAT QA were retrospectively analyzed. Plan verification doses were calculated using Eclipse Acuros XB, and absolute 3%/2 mm gamma passing rates were calculated to compare ArcCHECK and MapCHECK2 with MapPHAN. Verification doses were recalculated using AAA in Eclipse and with the EGSnrc Monte Carlo package. In addition, error-reduced Acuros XB doses were calculated by subdividing the entire arc into several sub-arcs ("split-arc" method), with the angular ranges of the sub-arcs optimized to balance accuracy and efficiency. Relative gamma passing rates were calculated and compared for the four methods: (1) Acuros XB; (2) AAA; (3) EGSnrc Monte Carlo; and (4) the split-arc method.The absolute gamma passing rates were below 90% for ArcCHECK and above 95% for MapCHECK2. The averaged relative gamma passing rates were (1) 84.7% for clinical Acuros XB; (2) 96.8% for AAA; (3) 98.8% for EGSnrc Monte Carlo; and (4) 96.8% for the split-arc method with 60° sub-arc angle. Compared to the clinical Acuros XB, the split-arc method improved the relative gamma passing rate by 12.1% on average. No significant difference was found between AAA and the split-arc method (p > 0.05).The Acuros XB spatial discretization errors can significantly impact the ArcCHECK VMAT QA results for small-field SBRT plans. The split-arc method may be used to improve the VMAT QA results.
科研通智能强力驱动
Strongly Powered by AbleSci AI