An enhanced fault diagnosis method for fuel cell system using a kernel extreme learning machine optimized with improved sparrow search algorithm

核主成分分析 支持向量机 计算机科学 粒子群优化 极限学习机 人工智能 算法 人工神经网络 模式识别(心理学) 核方法
作者
Rui Quan,Wenlong Liang,Junhui Wang,Xuerong Li,Yufang Chang
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:50: 1184-1196 被引量:9
标识
DOI:10.1016/j.ijhydene.2023.10.019
摘要

Proton exchange membrane fuel cells (PEMFC) have a broad development prospect in the fields of vehicles, drones and ships due to their high efficiency and cleanliness. However, the problems of insufficient reliability and durability have severely restricted their industrialization process. To improve the safety, reliability and durability of fuel cell system, a fault diagnosis method that combined kernel principal component analysis (KPCA) with an improved sparrow search algorithm (ISSA) and an optimized kernel extreme learning machine (KELM) was proposed in this study. Firstly, KPCA is utilized to extract nonlinear features from fault indicators and obtain the fault feature vector of the fuel cell system. Then, by incorporating logistic mapping and Cauchy Gaussian mutation strategies to improve the Sparrow Search Algorithm (SSA), ISSA was used to optimize the kernel parameters and regularization coefficient in KELM. The experimental results show that the KPCA-ISSA-KELM method for normal conditions, hydrogen leakage and membrane drying are 100%, 98.5% and 100%, respectively, with an overall accuracy of 99.5% and an operation time of 0.97s. The diagnostic accuracy of the proposed method is 10.4%, 5.7%, 4.8%, 4.2%, 3.0%, 1.8% higher than support vector machine (SVM), back propagation neural network (BPNN), KELM, genetic algorithm-based KELM (GA-KELM), particle swarm optimization-based KELM (PSO-KELM) and SSA-KELM, respectively, and the operation time is only slightly higher than that of the SVM model and KELM model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
风萧萧发布了新的文献求助10
4秒前
张磊发布了新的文献求助10
4秒前
5秒前
丘先生发布了新的文献求助10
6秒前
CL完成签到,获得积分10
6秒前
6秒前
Akihi完成签到,获得积分20
6秒前
7秒前
7秒前
王浩宇发布了新的文献求助10
8秒前
彭于晏应助muchen采纳,获得10
9秒前
酷酷若风发布了新的文献求助30
10秒前
LL发布了新的文献求助10
10秒前
靓丽天与发布了新的文献求助10
10秒前
咕噜完成签到,获得积分10
10秒前
一个晴天发布了新的文献求助10
11秒前
zho发布了新的文献求助10
12秒前
邓佳鑫Alan应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
13秒前
耍酷书雁完成签到,获得积分10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
邓佳鑫Alan应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
邓佳鑫Alan应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
夏远航应助科研通管家采纳,获得20
13秒前
勤劳无剑应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
13秒前
李健应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
叶十七发布了新的文献求助10
15秒前
17秒前
充电宝应助昏睡的半莲采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3132974
求助须知:如何正确求助?哪些是违规求助? 2784219
关于积分的说明 7765186
捐赠科研通 2439347
什么是DOI,文献DOI怎么找? 1296754
科研通“疑难数据库(出版商)”最低求助积分说明 624678
版权声明 600771