An enhanced fault diagnosis method for fuel cell system using a kernel extreme learning machine optimized with improved sparrow search algorithm

核主成分分析 支持向量机 计算机科学 粒子群优化 极限学习机 人工智能 算法 人工神经网络 模式识别(心理学) 核方法
作者
Rui Quan,Wenlong Liang,Junhui Wang,Xuerong Li,Yufang Chang
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:50: 1184-1196 被引量:36
标识
DOI:10.1016/j.ijhydene.2023.10.019
摘要

Proton exchange membrane fuel cells (PEMFC) have a broad development prospect in the fields of vehicles, drones and ships due to their high efficiency and cleanliness. However, the problems of insufficient reliability and durability have severely restricted their industrialization process. To improve the safety, reliability and durability of fuel cell system, a fault diagnosis method that combined kernel principal component analysis (KPCA) with an improved sparrow search algorithm (ISSA) and an optimized kernel extreme learning machine (KELM) was proposed in this study. Firstly, KPCA is utilized to extract nonlinear features from fault indicators and obtain the fault feature vector of the fuel cell system. Then, by incorporating logistic mapping and Cauchy Gaussian mutation strategies to improve the Sparrow Search Algorithm (SSA), ISSA was used to optimize the kernel parameters and regularization coefficient in KELM. The experimental results show that the KPCA-ISSA-KELM method for normal conditions, hydrogen leakage and membrane drying are 100%, 98.5% and 100%, respectively, with an overall accuracy of 99.5% and an operation time of 0.97s. The diagnostic accuracy of the proposed method is 10.4%, 5.7%, 4.8%, 4.2%, 3.0%, 1.8% higher than support vector machine (SVM), back propagation neural network (BPNN), KELM, genetic algorithm-based KELM (GA-KELM), particle swarm optimization-based KELM (PSO-KELM) and SSA-KELM, respectively, and the operation time is only slightly higher than that of the SVM model and KELM model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蚂蚁完成签到,获得积分20
刚刚
avalanche应助答辩科学家采纳,获得30
1秒前
CodeCraft应助跳跃的冰淇淋采纳,获得10
2秒前
复杂曼梅发布了新的文献求助10
2秒前
Y橙子完成签到,获得积分10
3秒前
zyq发布了新的文献求助10
3秒前
隐形曼青应助郑zhenglanyou采纳,获得10
3秒前
4秒前
漂亮夏兰发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
Ava应助没有你沉采纳,获得10
4秒前
4秒前
5秒前
寻道图强应助General采纳,获得30
5秒前
6秒前
17发布了新的文献求助30
7秒前
善学以致用应助王世俊采纳,获得10
7秒前
小v的格洛米完成签到,获得积分10
7秒前
等待冰之完成签到 ,获得积分10
7秒前
上彐下火发布了新的文献求助10
8秒前
Catalina_S应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
icey发布了新的文献求助10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
HeAuBook应助科研通管家采纳,获得20
9秒前
风趣手链发布了新的文献求助10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424345
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163720
捐赠科研通 4455670
什么是DOI,文献DOI怎么找? 2443852
邀请新用户注册赠送积分活动 1434997
关于科研通互助平台的介绍 1412337