An enhanced fault diagnosis method for fuel cell system using a kernel extreme learning machine optimized with improved sparrow search algorithm

核主成分分析 支持向量机 计算机科学 粒子群优化 极限学习机 人工智能 算法 人工神经网络 模式识别(心理学) 核方法
作者
Rui Quan,Wenlong Liang,Junhui Wang,Xuerong Li,Yufang Chang
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:50: 1184-1196 被引量:16
标识
DOI:10.1016/j.ijhydene.2023.10.019
摘要

Proton exchange membrane fuel cells (PEMFC) have a broad development prospect in the fields of vehicles, drones and ships due to their high efficiency and cleanliness. However, the problems of insufficient reliability and durability have severely restricted their industrialization process. To improve the safety, reliability and durability of fuel cell system, a fault diagnosis method that combined kernel principal component analysis (KPCA) with an improved sparrow search algorithm (ISSA) and an optimized kernel extreme learning machine (KELM) was proposed in this study. Firstly, KPCA is utilized to extract nonlinear features from fault indicators and obtain the fault feature vector of the fuel cell system. Then, by incorporating logistic mapping and Cauchy Gaussian mutation strategies to improve the Sparrow Search Algorithm (SSA), ISSA was used to optimize the kernel parameters and regularization coefficient in KELM. The experimental results show that the KPCA-ISSA-KELM method for normal conditions, hydrogen leakage and membrane drying are 100%, 98.5% and 100%, respectively, with an overall accuracy of 99.5% and an operation time of 0.97s. The diagnostic accuracy of the proposed method is 10.4%, 5.7%, 4.8%, 4.2%, 3.0%, 1.8% higher than support vector machine (SVM), back propagation neural network (BPNN), KELM, genetic algorithm-based KELM (GA-KELM), particle swarm optimization-based KELM (PSO-KELM) and SSA-KELM, respectively, and the operation time is only slightly higher than that of the SVM model and KELM model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
996755发布了新的文献求助10
刚刚
1秒前
Ava应助lfzw采纳,获得30
1秒前
Chen完成签到,获得积分10
1秒前
识檐发布了新的文献求助10
2秒前
4秒前
爆米花应助肝不动的牛马采纳,获得10
4秒前
超帅连虎发布了新的文献求助10
4秒前
热心市民小红花应助柠A采纳,获得10
4秒前
ZWZ完成签到,获得积分10
5秒前
彭于晏应助Starry采纳,获得10
5秒前
领导范儿应助一杯月光采纳,获得10
5秒前
5秒前
李健应助努力学习采纳,获得10
6秒前
6秒前
7秒前
小蔡要加辣应助ssjk采纳,获得10
7秒前
朱文韬发布了新的文献求助10
7秒前
7秒前
7秒前
粥粥发布了新的文献求助10
8秒前
8秒前
9秒前
糕手发布了新的文献求助10
10秒前
妮妮发布了新的文献求助10
11秒前
爱睡午觉发布了新的文献求助10
11秒前
铜绿完成签到,获得积分10
12秒前
李明发布了新的文献求助10
12秒前
活力的招牌完成签到 ,获得积分10
13秒前
善学以致用应助细辛采纳,获得10
13秒前
研友_VZG7GZ应助MoreScholarship采纳,获得10
13秒前
Gia完成签到,获得积分10
14秒前
八零发布了新的文献求助20
14秒前
14秒前
15秒前
陶子完成签到,获得积分10
15秒前
崔志海完成签到,获得积分10
15秒前
慧慧完成签到,获得积分10
16秒前
昏睡的蟠桃应助Little2采纳,获得80
16秒前
子月亮完成签到,获得积分10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199