A non-regularization self-supervised Retinex approach to low-light image enhancement with parameterized illumination estimation

颜色恒定性 正规化(语言学) 计算机科学 人工智能 网格 鉴别器 模式识别(心理学) 计算机视觉 图像(数学) 数学 电信 几何学 探测器
作者
Zunjin Zhao,Hexiu Lin,Daming Shi,Guoqing Zhou
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110025-110025 被引量:18
标识
DOI:10.1016/j.patcog.2023.110025
摘要

In current Retinex-based low-light image enhancement (LLIE) methods, fine-tuning regularization parameters for Retinex decomposition and illumination estimation can be cumbersome. To address this, we present a novel non-regularization self-supervised Retinex approach for illumination estimation. Our contributions are twofold: First, we introduce a self-supervised method that incorporates edge-aware smoothness properties in bilateral learning, eliminating the need for regularization terms and simplifying parameter adjustments. Second, to enforce smoothness constraints on the estimated bilateral grid, we propose a bilateral grid parameterization network. This network employs a generative encoder to parameterize the bilateral grid of illumination and a trainable slicing layer guided by a map, reconstructing the grid into an illumination map. Despite the absence of regularization terms, our model excels in generating piece-wise smooth illumination, resulting in enhanced naturalness and improved contrast in images. Our model offers exceptional flexibility by eliminating the need for additional regularization terms and parameter fine-tuning. Moreover, it does not depend on external datasets for training, overcoming dataset collection challenges. Extensive experiments, comparing our model with eight state-of-the-art methods across five public available datasets, unequivocally demonstrate our model's state-of-the-art performance based on key metrics such as NIQE, NIQMC, and CPCQI. These results reaffirm the effectiveness of our approach in low-light image enhancement. Code will be available at: https://github.com/zhaozunjin/NeurBR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白完成签到 ,获得积分10
刚刚
lili完成签到 ,获得积分10
2秒前
October完成签到,获得积分10
2秒前
3秒前
科研通AI6应助豆豆突采纳,获得10
4秒前
嘿嘿发布了新的文献求助10
7秒前
张丹兰完成签到,获得积分10
7秒前
微笑的丑发布了新的文献求助10
8秒前
9秒前
10秒前
繁荣的夏岚完成签到 ,获得积分10
12秒前
12秒前
ZeKaWa应助keyan123采纳,获得10
14秒前
Jeff发布了新的文献求助10
14秒前
Wang发布了新的文献求助30
15秒前
16秒前
17秒前
一点通完成签到,获得积分10
19秒前
华仔应助mnm采纳,获得10
21秒前
Akim应助Jeff采纳,获得10
21秒前
威武紫青发布了新的文献求助10
22秒前
嘿嘿发布了新的文献求助10
22秒前
23秒前
深情安青应助微笑的丑采纳,获得10
23秒前
DengJJJ完成签到,获得积分10
24秒前
24秒前
26秒前
有且仅有发布了新的文献求助10
28秒前
28秒前
29秒前
菩提石头发布了新的文献求助10
30秒前
31秒前
32秒前
WHr完成签到,获得积分10
32秒前
Jodie发布了新的文献求助10
32秒前
Verity应助张zhang采纳,获得10
32秒前
威武紫青完成签到,获得积分10
34秒前
mnm发布了新的文献求助10
34秒前
36秒前
Lea应助zzyan采纳,获得50
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560313
求助须知:如何正确求助?哪些是违规求助? 4645465
关于积分的说明 14675208
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915