亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A non-regularization self-supervised Retinex approach to low-light image enhancement with parameterized illumination estimation

颜色恒定性 正规化(语言学) 计算机科学 人工智能 网格 鉴别器 模式识别(心理学) 计算机视觉 图像(数学) 数学 电信 几何学 探测器
作者
Zunjin Zhao,Hexiu Lin,Daming Shi,Guoqing Zhou
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110025-110025 被引量:18
标识
DOI:10.1016/j.patcog.2023.110025
摘要

In current Retinex-based low-light image enhancement (LLIE) methods, fine-tuning regularization parameters for Retinex decomposition and illumination estimation can be cumbersome. To address this, we present a novel non-regularization self-supervised Retinex approach for illumination estimation. Our contributions are twofold: First, we introduce a self-supervised method that incorporates edge-aware smoothness properties in bilateral learning, eliminating the need for regularization terms and simplifying parameter adjustments. Second, to enforce smoothness constraints on the estimated bilateral grid, we propose a bilateral grid parameterization network. This network employs a generative encoder to parameterize the bilateral grid of illumination and a trainable slicing layer guided by a map, reconstructing the grid into an illumination map. Despite the absence of regularization terms, our model excels in generating piece-wise smooth illumination, resulting in enhanced naturalness and improved contrast in images. Our model offers exceptional flexibility by eliminating the need for additional regularization terms and parameter fine-tuning. Moreover, it does not depend on external datasets for training, overcoming dataset collection challenges. Extensive experiments, comparing our model with eight state-of-the-art methods across five public available datasets, unequivocally demonstrate our model's state-of-the-art performance based on key metrics such as NIQE, NIQMC, and CPCQI. These results reaffirm the effectiveness of our approach in low-light image enhancement. Code will be available at: https://github.com/zhaozunjin/NeurBR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
22秒前
42秒前
烛夜黎发布了新的文献求助10
57秒前
顾矜应助烛夜黎采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI6应助lulu采纳,获得10
1分钟前
科研通AI6应助lulu采纳,获得10
1分钟前
科研通AI6应助lulu采纳,获得10
1分钟前
科研通AI6应助lulu采纳,获得10
1分钟前
啦啦啦啦啦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
ALpha发布了新的文献求助10
2分钟前
2分钟前
真实的瑾瑜完成签到 ,获得积分10
2分钟前
2分钟前
ALpha完成签到,获得积分10
2分钟前
2分钟前
科研小白菜完成签到,获得积分10
2分钟前
GL发布了新的文献求助10
2分钟前
2分钟前
2分钟前
聪明怜阳发布了新的文献求助10
2分钟前
orixero应助GL采纳,获得30
2分钟前
blenx完成签到,获得积分10
3分钟前
3分钟前
ZBQ发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
ying818k发布了新的文献求助10
3分钟前
3分钟前
lulu发布了新的文献求助10
4分钟前
4分钟前
4分钟前
lulu发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488538
求助须知:如何正确求助?哪些是违规求助? 4587379
关于积分的说明 14413773
捐赠科研通 4518750
什么是DOI,文献DOI怎么找? 2476038
邀请新用户注册赠送积分活动 1461532
关于科研通互助平台的介绍 1434442