A non-regularization self-supervised Retinex approach to low-light image enhancement with parameterized illumination estimation

颜色恒定性 正规化(语言学) 计算机科学 人工智能 网格 鉴别器 模式识别(心理学) 计算机视觉 图像(数学) 数学 电信 几何学 探测器
作者
Zunjin Zhao,Hexiu Lin,Daming Shi,Guoqing Zhou
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110025-110025 被引量:18
标识
DOI:10.1016/j.patcog.2023.110025
摘要

In current Retinex-based low-light image enhancement (LLIE) methods, fine-tuning regularization parameters for Retinex decomposition and illumination estimation can be cumbersome. To address this, we present a novel non-regularization self-supervised Retinex approach for illumination estimation. Our contributions are twofold: First, we introduce a self-supervised method that incorporates edge-aware smoothness properties in bilateral learning, eliminating the need for regularization terms and simplifying parameter adjustments. Second, to enforce smoothness constraints on the estimated bilateral grid, we propose a bilateral grid parameterization network. This network employs a generative encoder to parameterize the bilateral grid of illumination and a trainable slicing layer guided by a map, reconstructing the grid into an illumination map. Despite the absence of regularization terms, our model excels in generating piece-wise smooth illumination, resulting in enhanced naturalness and improved contrast in images. Our model offers exceptional flexibility by eliminating the need for additional regularization terms and parameter fine-tuning. Moreover, it does not depend on external datasets for training, overcoming dataset collection challenges. Extensive experiments, comparing our model with eight state-of-the-art methods across five public available datasets, unequivocally demonstrate our model's state-of-the-art performance based on key metrics such as NIQE, NIQMC, and CPCQI. These results reaffirm the effectiveness of our approach in low-light image enhancement. Code will be available at: https://github.com/zhaozunjin/NeurBR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在下小李发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
caoyy完成签到,获得积分10
1秒前
张志超发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI6应助小巧的蓝血采纳,获得10
2秒前
万能图书馆应助帆帆帆采纳,获得10
2秒前
奥利奥完成签到 ,获得积分10
2秒前
正直听白发布了新的文献求助10
2秒前
上官若男应助YDX采纳,获得10
3秒前
3秒前
zhang完成签到,获得积分10
3秒前
cocp发布了新的文献求助10
3秒前
小小威发布了新的文献求助10
3秒前
武小伟发布了新的文献求助10
3秒前
3秒前
秦英杰完成签到,获得积分20
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
张生娣完成签到,获得积分10
4秒前
hyx发布了新的文献求助10
4秒前
算命先生发布了新的文献求助10
4秒前
ilihe应助Jeffery426采纳,获得10
4秒前
科研通AI6应助Venom采纳,获得10
4秒前
饼饼发布了新的文献求助10
5秒前
JiangY发布了新的文献求助10
5秒前
赘婿应助Sucre采纳,获得10
5秒前
6秒前
6秒前
7秒前
7秒前
dong发布了新的文献求助10
7秒前
含蓄的天问完成签到 ,获得积分10
7秒前
小吉麻麻发布了新的文献求助10
7秒前
7秒前
00关注了科研通微信公众号
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827