A graph-guided collaborative convolutional neural network for fault diagnosis of electromechanical systems

卷积神经网络 计算机科学 图形 人工智能 机器学习 断层(地质) 传感器融合 模式识别(心理学) 卷积(计算机科学) 人工神经网络 数据挖掘 理论计算机科学 地震学 地质学
作者
Yadong Xu,Jinchen Ji,Qing Ni,Ke Feng,Michael Beer,Hongtian Chen
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110609-110609 被引量:49
标识
DOI:10.1016/j.ymssp.2023.110609
摘要

Collaborative fault diagnosis has become a hot research topic in fault detection and identification, greatly benefiting from emerging multisensory fusion techniques and newly developed convolutional neural network (CNN) models. Existing CNN models take advantage of various fusion techniques to identify machine health status by utilizing multiple sensory signals. Nevertheless, a few of them are able to simultaneously explore modality-specific features and intrinsic shared features among multi-source signals, limiting the capability of the exploration of multisource data. To address this issue, this paper proposes a novel convolutional network called a graph-guided collaborative convolutional neural network (GGCN) for highly-effective fault diagnosis of electromechanical systems. The main contributions of this study include: (1) developing a novel graph-guided CNN algorithm for collaborative fault detection; (2) establishing a graph reasoning fusion module (GRFM) to explore the inherent correlations between multisource signals; and (3) advancing the current approaches by taking into account both the distribution gap and the intrinsic correlation between different signals simultaneously. The developed GGCN is expected to shed new light on collaborative fault diagnosis using the graph-convolution-based intermediate fusion scheme. Two experimental datasets namely, the cylindrical rolling bearing dataset and the planetary gearbox dataset, are applied in this paper to verify the efficacy of the GGCN. Experimental results demonstrate that GGCN outperforms seven other state-of-the-art approaches, particularly under noisy conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助ppat5012采纳,获得10
刚刚
1秒前
123发布了新的文献求助10
2秒前
Hello应助谷粱紫槐采纳,获得10
2秒前
Zeze完成签到,获得积分10
2秒前
机智猴完成签到,获得积分10
2秒前
2秒前
BowieHuang应助666采纳,获得10
3秒前
钱大大完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
阿黎发布了新的文献求助30
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得30
6秒前
Owen应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
7秒前
张嘉伟发布了新的文献求助10
8秒前
8秒前
xz完成签到,获得积分10
8秒前
dq1992完成签到,获得积分10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752140
求助须知:如何正确求助?哪些是违规求助? 5472900
关于积分的说明 15373131
捐赠科研通 4891251
什么是DOI,文献DOI怎么找? 2630284
邀请新用户注册赠送积分活动 1578475
关于科研通互助平台的介绍 1534465