A graph-guided collaborative convolutional neural network for fault diagnosis of electromechanical systems

卷积神经网络 计算机科学 图形 人工智能 机器学习 断层(地质) 传感器融合 模式识别(心理学) 卷积(计算机科学) 人工神经网络 数据挖掘 理论计算机科学 地震学 地质学
作者
Yadong Xu,Jinchen Ji,Qing Ni,Ke Feng,Michael Beer,Hongtian Chen
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110609-110609 被引量:49
标识
DOI:10.1016/j.ymssp.2023.110609
摘要

Collaborative fault diagnosis has become a hot research topic in fault detection and identification, greatly benefiting from emerging multisensory fusion techniques and newly developed convolutional neural network (CNN) models. Existing CNN models take advantage of various fusion techniques to identify machine health status by utilizing multiple sensory signals. Nevertheless, a few of them are able to simultaneously explore modality-specific features and intrinsic shared features among multi-source signals, limiting the capability of the exploration of multisource data. To address this issue, this paper proposes a novel convolutional network called a graph-guided collaborative convolutional neural network (GGCN) for highly-effective fault diagnosis of electromechanical systems. The main contributions of this study include: (1) developing a novel graph-guided CNN algorithm for collaborative fault detection; (2) establishing a graph reasoning fusion module (GRFM) to explore the inherent correlations between multisource signals; and (3) advancing the current approaches by taking into account both the distribution gap and the intrinsic correlation between different signals simultaneously. The developed GGCN is expected to shed new light on collaborative fault diagnosis using the graph-convolution-based intermediate fusion scheme. Two experimental datasets namely, the cylindrical rolling bearing dataset and the planetary gearbox dataset, are applied in this paper to verify the efficacy of the GGCN. Experimental results demonstrate that GGCN outperforms seven other state-of-the-art approaches, particularly under noisy conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
犹豫的向南完成签到,获得积分10
刚刚
gm完成签到,获得积分10
刚刚
丧彪发布了新的文献求助10
刚刚
刚刚
Maruko_0_发布了新的文献求助10
1秒前
Yel发布了新的文献求助30
1秒前
SSS完成签到,获得积分10
1秒前
顺心的觅荷完成签到,获得积分10
1秒前
1秒前
张张完成签到,获得积分10
1秒前
打打应助怂怂采纳,获得10
1秒前
zyc1111111完成签到,获得积分10
2秒前
脑洞疼应助斯文可仁采纳,获得10
2秒前
凌梦完成签到,获得积分10
2秒前
3秒前
Crystal完成签到,获得积分10
3秒前
明亮的元柏完成签到,获得积分10
3秒前
图南完成签到 ,获得积分10
3秒前
4秒前
shusz完成签到,获得积分10
5秒前
乐乐应助李Li采纳,获得10
5秒前
安容天完成签到,获得积分10
5秒前
洋甘菊发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
李爱国应助火星上雁枫采纳,获得30
7秒前
chentong完成签到,获得积分10
7秒前
俏皮晓曼发布了新的文献求助10
7秒前
gao完成签到,获得积分20
7秒前
别说话完成签到,获得积分10
7秒前
斯文败类应助15134786587采纳,获得10
7秒前
九珥完成签到 ,获得积分10
7秒前
8秒前
积极蘑菇发布了新的文献求助10
8秒前
科目三应助美好黑猫采纳,获得10
8秒前
blchen2560发布了新的文献求助10
8秒前
ding应助云来如梦采纳,获得10
8秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699170
求助须知:如何正确求助?哪些是违规求助? 5129604
关于积分的说明 15224865
捐赠科研通 4854105
什么是DOI,文献DOI怎么找? 2604467
邀请新用户注册赠送积分活动 1555994
关于科研通互助平台的介绍 1514275