A graph-guided collaborative convolutional neural network for fault diagnosis of electromechanical systems

卷积神经网络 计算机科学 图形 人工智能 机器学习 断层(地质) 传感器融合 模式识别(心理学) 卷积(计算机科学) 人工神经网络 数据挖掘 理论计算机科学 地震学 地质学
作者
Yadong Xu,Jinchen Ji,Qing Ni,Ke Feng,Michael Beer,Hongtian Chen
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110609-110609 被引量:49
标识
DOI:10.1016/j.ymssp.2023.110609
摘要

Collaborative fault diagnosis has become a hot research topic in fault detection and identification, greatly benefiting from emerging multisensory fusion techniques and newly developed convolutional neural network (CNN) models. Existing CNN models take advantage of various fusion techniques to identify machine health status by utilizing multiple sensory signals. Nevertheless, a few of them are able to simultaneously explore modality-specific features and intrinsic shared features among multi-source signals, limiting the capability of the exploration of multisource data. To address this issue, this paper proposes a novel convolutional network called a graph-guided collaborative convolutional neural network (GGCN) for highly-effective fault diagnosis of electromechanical systems. The main contributions of this study include: (1) developing a novel graph-guided CNN algorithm for collaborative fault detection; (2) establishing a graph reasoning fusion module (GRFM) to explore the inherent correlations between multisource signals; and (3) advancing the current approaches by taking into account both the distribution gap and the intrinsic correlation between different signals simultaneously. The developed GGCN is expected to shed new light on collaborative fault diagnosis using the graph-convolution-based intermediate fusion scheme. Two experimental datasets namely, the cylindrical rolling bearing dataset and the planetary gearbox dataset, are applied in this paper to verify the efficacy of the GGCN. Experimental results demonstrate that GGCN outperforms seven other state-of-the-art approaches, particularly under noisy conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
3秒前
SciKid524完成签到 ,获得积分10
4秒前
4秒前
Berne发布了新的文献求助10
4秒前
5秒前
斯文败类应助xh采纳,获得10
5秒前
ljw完成签到 ,获得积分10
5秒前
SciGPT应助1212采纳,获得10
5秒前
清脆南霜完成签到,获得积分10
6秒前
6秒前
bunny发布了新的文献求助10
6秒前
Owen应助伶俐鹤轩采纳,获得20
7秒前
小二郎应助王蕊采纳,获得10
7秒前
7秒前
杨小鸿发布了新的文献求助10
8秒前
dddd发布了新的文献求助10
10秒前
Nara2021发布了新的文献求助10
12秒前
13秒前
183完成签到,获得积分10
14秒前
石头爱科研完成签到,获得积分10
14秒前
15秒前
科研通AI6.1应助bunny采纳,获得10
15秒前
若水完成签到,获得积分0
15秒前
16秒前
cherish完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助30
17秒前
鲨鱼游泳教练完成签到,获得积分10
19秒前
21秒前
22秒前
lsrlsr发布了新的文献求助10
22秒前
华仔应助傻傻的雅寒采纳,获得10
23秒前
王蕊发布了新的文献求助10
23秒前
伶俐鹤轩完成签到,获得积分10
24秒前
SciGPT应助杨小鸿采纳,获得10
25秒前
BIGDUCK发布了新的文献求助10
25秒前
王者归来完成签到,获得积分10
26秒前
伶俐鹤轩发布了新的文献求助20
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978