A graph-guided collaborative convolutional neural network for fault diagnosis of electromechanical systems

卷积神经网络 计算机科学 图形 人工智能 机器学习 断层(地质) 传感器融合 模式识别(心理学) 卷积(计算机科学) 人工神经网络 数据挖掘 理论计算机科学 地质学 地震学
作者
Yadong Xu,Jinchen Ji,Qing Ni,Ke Feng,Michael Beer,Hongtian Chen
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110609-110609 被引量:10
标识
DOI:10.1016/j.ymssp.2023.110609
摘要

Collaborative fault diagnosis has become a hot research topic in fault detection and identification, greatly benefiting from emerging multisensory fusion techniques and newly developed convolutional neural network (CNN) models. Existing CNN models take advantage of various fusion techniques to identify machine health status by utilizing multiple sensory signals. Nevertheless, a few of them are able to simultaneously explore modality-specific features and intrinsic shared features among multi-source signals, limiting the capability of the exploration of multisource data. To address this issue, this paper proposes a novel convolutional network called a graph-guided collaborative convolutional neural network (GGCN) for highly-effective fault diagnosis of electromechanical systems. The main contributions of this study include: (1) developing a novel graph-guided CNN algorithm for collaborative fault detection; (2) establishing a graph reasoning fusion module (GRFM) to explore the inherent correlations between multisource signals; and (3) advancing the current approaches by taking into account both the distribution gap and the intrinsic correlation between different signals simultaneously. The developed GGCN is expected to shed new light on collaborative fault diagnosis using the graph-convolution-based intermediate fusion scheme. Two experimental datasets namely, the cylindrical rolling bearing dataset and the planetary gearbox dataset, are applied in this paper to verify the efficacy of the GGCN. Experimental results demonstrate that GGCN outperforms seven other state-of-the-art approaches, particularly under noisy conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
伯赏诗霜发布了新的文献求助10
刚刚
1秒前
1秒前
程哲瀚完成签到,获得积分10
1秒前
Brennan完成签到,获得积分10
2秒前
3秒前
3秒前
笨笨善若发布了新的文献求助10
4秒前
4秒前
5秒前
樘樘完成签到,获得积分10
5秒前
一个有点长的序完成签到 ,获得积分10
6秒前
孙淳完成签到,获得积分10
7秒前
7秒前
YYJ25发布了新的文献求助10
8秒前
Jzhang应助tmpstlml采纳,获得10
9秒前
微笑的南露完成签到 ,获得积分10
9秒前
豌豆关注了科研通微信公众号
9秒前
12秒前
笨笨善若完成签到,获得积分10
14秒前
hs完成签到,获得积分20
14秒前
ZHANGMANLI0422完成签到,获得积分10
14秒前
susu关注了科研通微信公众号
16秒前
DYuH23完成签到,获得积分10
17秒前
18秒前
爱静静应助DHL采纳,获得10
18秒前
18秒前
sunny661104完成签到 ,获得积分10
19秒前
简单完成签到 ,获得积分10
19秒前
尘林发布了新的文献求助10
19秒前
Z-先森完成签到,获得积分0
20秒前
苏源智发布了新的文献求助10
20秒前
伯赏诗霜完成签到,获得积分10
21秒前
NN应助LIn采纳,获得10
22秒前
22秒前
超级无敌学术苦瓜完成签到,获得积分10
22秒前
22秒前
Zn应助111采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849