Unleashing the power of SDN and GNN for network anomaly detection: State‐of‐the‐art, challenges, and future directions

异常检测 计算机科学 软件定义的网络 数据挖掘 异常(物理) 图形 分布式计算 理论计算机科学 凝聚态物理 物理
作者
Archan Dhadhania,Jitendra Bhatia,Rachana Mehta,Sudeep Tanwar,Ravi Sharma,Amit Verma
出处
期刊:Security and privacy [Wiley]
卷期号:7 (1) 被引量:4
标识
DOI:10.1002/spy2.337
摘要

Abstract Modern computer networks' increasing complexity and scale need serious attention towards network anomaly detection. Software‐defined networking (SDN) and graph neural networks (GNN) have emerged as promising approaches for anomaly detection due to their ability to capture dynamic network behavior and learn complex patterns from large‐scale network data. The amalgamation of SDN and GNN for network anomaly detection presents promising opportunities for improving the accuracy and efficiency of network anomaly detection. This paper focuses on various trends, issues, and challenges by integrating GNN on the top of SDN for network anomaly detection. The article highlights the advantages of using SDN for providing fine‐grained control and programmability in network monitoring. At the same time, GNN can model network behavior as a graph and learn representations from graph‐structured data. The authors also discuss the limitations of traditional anomaly detection methods in SDN, such as rule‐based approaches, and the potential of GNN to overcome these limitations by leveraging their ability to capture non‐linear and dynamic patterns in network data. This paper also presents a case study of DoS attack detection using SDN. The result shows that SDN based approach helps to detect attacks with an accuracy of 97% with future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dddb完成签到,获得积分10
刚刚
Lucas应助bofu采纳,获得10
刚刚
1秒前
KZxxx完成签到,获得积分20
1秒前
2秒前
肥肥凤梨完成签到,获得积分10
2秒前
时尚羿完成签到,获得积分20
2秒前
3秒前
3秒前
hhh发布了新的文献求助10
3秒前
小糯发布了新的文献求助10
3秒前
4秒前
SciGPT应助xinanan采纳,获得10
5秒前
5秒前
6秒前
niluofan发布了新的文献求助10
6秒前
7秒前
幸福羽毛发布了新的文献求助10
8秒前
CodeCraft应助忐忑的如曼采纳,获得10
8秒前
8秒前
小鱼完成签到,获得积分10
8秒前
乐观振家发布了新的文献求助10
9秒前
儒雅不弱发布了新的文献求助10
10秒前
天天快乐应助bofu采纳,获得10
10秒前
卓儿完成签到,获得积分10
10秒前
认真涵瑶发布了新的文献求助10
12秒前
wankai发布了新的文献求助10
12秒前
852应助阳光白羊采纳,获得10
13秒前
nini完成签到,获得积分10
13秒前
奋斗的夏柳完成签到 ,获得积分10
14秒前
无畏完成签到 ,获得积分10
14秒前
14秒前
jason完成签到,获得积分10
15秒前
月yue发布了新的文献求助10
15秒前
朴素的招牌完成签到,获得积分10
15秒前
16秒前
仁清完成签到,获得积分10
16秒前
SciGPT应助认真的灵枫采纳,获得10
16秒前
Chloe完成签到,获得积分10
17秒前
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734840
求助须知:如何正确求助?哪些是违规求助? 3278768
关于积分的说明 10011520
捐赠科研通 2995441
什么是DOI,文献DOI怎么找? 1643442
邀请新用户注册赠送积分活动 781187
科研通“疑难数据库(出版商)”最低求助积分说明 749300