Unleashing the power of SDN and GNN for network anomaly detection: State‐of‐the‐art, challenges, and future directions

异常检测 计算机科学 软件定义的网络 数据挖掘 异常(物理) 图形 分布式计算 理论计算机科学 物理 凝聚态物理
作者
Archan Dhadhania,Jitendra Bhatia,Rachana Mehta,Sudeep Tanwar,Ravi Sharma,Amit Verma
出处
期刊:Security and privacy [Wiley]
卷期号:7 (1) 被引量:4
标识
DOI:10.1002/spy2.337
摘要

Abstract Modern computer networks' increasing complexity and scale need serious attention towards network anomaly detection. Software‐defined networking (SDN) and graph neural networks (GNN) have emerged as promising approaches for anomaly detection due to their ability to capture dynamic network behavior and learn complex patterns from large‐scale network data. The amalgamation of SDN and GNN for network anomaly detection presents promising opportunities for improving the accuracy and efficiency of network anomaly detection. This paper focuses on various trends, issues, and challenges by integrating GNN on the top of SDN for network anomaly detection. The article highlights the advantages of using SDN for providing fine‐grained control and programmability in network monitoring. At the same time, GNN can model network behavior as a graph and learn representations from graph‐structured data. The authors also discuss the limitations of traditional anomaly detection methods in SDN, such as rule‐based approaches, and the potential of GNN to overcome these limitations by leveraging their ability to capture non‐linear and dynamic patterns in network data. This paper also presents a case study of DoS attack detection using SDN. The result shows that SDN based approach helps to detect attacks with an accuracy of 97% with future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
脑洞疼应助NK001采纳,获得30
2秒前
乐乐应助zwenng采纳,获得10
3秒前
3秒前
naitangkeke发布了新的文献求助30
4秒前
科研通AI2S应助llg采纳,获得10
4秒前
林和完成签到 ,获得积分10
5秒前
星辰大海应助SS1988采纳,获得10
6秒前
6秒前
7秒前
科研通AI2S应助cannon8采纳,获得10
7秒前
8秒前
学霸发布了新的文献求助10
8秒前
9秒前
在水一方应助yy123采纳,获得10
9秒前
tutulunzi发布了新的文献求助10
10秒前
10秒前
肉卷完成签到 ,获得积分10
11秒前
13秒前
13秒前
13秒前
13秒前
搬砖民工完成签到,获得积分10
14秒前
ding应助学霸采纳,获得10
14秒前
lz发布了新的文献求助10
14秒前
ShengQ完成签到,获得积分10
14秒前
活泼的以亦完成签到,获得积分10
15秒前
zwenng发布了新的文献求助10
15秒前
张三坟应助科研通管家采纳,获得30
16秒前
今后应助科研通管家采纳,获得10
16秒前
16秒前
加特林应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
打打应助科研通管家采纳,获得10
16秒前
丽丽关注了科研通微信公众号
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3079267
求助须知:如何正确求助?哪些是违规求助? 2731896
关于积分的说明 7521337
捐赠科研通 2380638
什么是DOI,文献DOI怎么找? 1262413
科研通“疑难数据库(出版商)”最低求助积分说明 611928
版权声明 597414