Unsafe Diffusion: On the Generation of Unsafe Images and Hateful Memes From Text-To-Image Models

计算机科学 图像(数学) 利用 光学(聚焦) 构造(python库) 人工智能 图像编辑 计算机安全 光学 物理 程序设计语言
作者
Yiting Qu,Xinyue Shen,Xinlei He,Michael Backes,Savvas Zannettou,Yang Zhang
标识
DOI:10.1145/3576915.3616679
摘要

State-of-the-art Text-to-Image models like Stable Diffusion and DALLE\cdot2 are revolutionizing how people generate visual content. At the same time, society has serious concerns about how adversaries can exploit such models to generate problematic or unsafe images. In this work, we focus on demystifying the generation of unsafe images and hateful memes from Text-to-Image models. We first construct a typology of unsafe images consisting of five categories (sexually explicit, violent, disturbing, hateful, and political). Then, we assess the proportion of unsafe images generated by four advanced Text-to-Image models using four prompt datasets. We find that Text-to-Image models can generate a substantial percentage of unsafe images; across four models and four prompt datasets, 14.56% of all generated images are unsafe. When comparing the four Text-to-Image models, we find different risk levels, with Stable Diffusion being the most prone to generating unsafe content (18.92% of all generated images are unsafe). Given Stable Diffusion's tendency to generate more unsafe content, we evaluate its potential to generate hateful meme variants if exploited by an adversary to attack a specific individual or community. We employ three image editing methods, DreamBooth, Textual Inversion, and SDEdit, which are supported by Stable Diffusion to generate variants. Our evaluation result shows that 24% of the generated images using DreamBooth are hateful meme variants that present the features of the original hateful meme and the target individual/community; these generated images are comparable to hateful meme variants collected from the real world. Overall, our results demonstrate that the danger of large-scale generation of unsafe images is imminent. We discuss several mitigating measures, such as curating training data, regulating prompts, and implementing safety filters, and encourage better safeguard tools to be developed to prevent unsafe generation.1 Our code is available at https://github.com/YitingQu/unsafe-diffusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰灰发布了新的文献求助20
1秒前
科研通AI5应助饱满的海秋采纳,获得10
1秒前
1秒前
阿王发布了新的文献求助10
1秒前
1秒前
2秒前
Yhcir完成签到 ,获得积分10
2秒前
3秒前
4秒前
沸羊羊完成签到,获得积分10
4秒前
花开富贵发布了新的文献求助20
4秒前
海儿发布了新的文献求助10
4秒前
bobo发布了新的文献求助10
4秒前
6秒前
Sylvia发布了新的文献求助30
7秒前
huahuao发布了新的文献求助30
7秒前
潇洒如凡完成签到,获得积分10
8秒前
小马甲应助qiaoshan_Jason采纳,获得10
9秒前
9秒前
superspace发布了新的文献求助10
10秒前
蒋念寒发布了新的文献求助10
10秒前
11秒前
11秒前
zoe完成签到,获得积分10
11秒前
科研通AI5应助旺旺小小贝采纳,获得10
12秒前
bobo完成签到,获得积分10
12秒前
黄绍泽完成签到,获得积分10
12秒前
TiYork完成签到 ,获得积分10
13秒前
自由念露完成签到 ,获得积分10
13秒前
赘婿应助Antigua采纳,获得10
13秒前
13秒前
14秒前
atad2完成签到,获得积分10
15秒前
minzhe完成签到,获得积分10
15秒前
我不爱池鱼应助ming采纳,获得10
16秒前
科研通AI5应助蒋念寒采纳,获得10
16秒前
跳跃雨泽发布了新的文献求助10
16秒前
小卫发布了新的文献求助10
16秒前
17秒前
科研通AI5应助likes采纳,获得30
17秒前
高分求助中
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and how to use plate heat exchangers 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Cardiac arrhythmia classification of imbalanced data using convolutional autoencoder and LSTM techniques 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702490
求助须知:如何正确求助?哪些是违规求助? 3252268
关于积分的说明 9879009
捐赠科研通 2964370
什么是DOI,文献DOI怎么找? 1625627
邀请新用户注册赠送积分活动 770169
科研通“疑难数据库(出版商)”最低求助积分说明 742869