已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evolutionary Gravitational Neocognitron Neural Network-Based Blood Flow Velocity Prediction Using Multi-Exposure Laser Speckle Contrast Imaging

斑点图案 人工智能 散斑噪声 模式识别(心理学) 计算机科学 均方误差 降噪 计算机视觉 数学 统计
作者
Pankaj Jain,Saurabh Gupta
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:37 (15) 被引量:1
标识
DOI:10.1142/s0218001423560232
摘要

Wide-field and noncontact imaging technique called laser speckle contrast imaging (LSCI) is utilized to map blood flow. To greatly improve prediction accuracy, the block-matching along 3-dimensional transform domain collaborative filtering-dependent denoising technique is developed. To implement real-time denoising, the processing time makes complexity. Due to the existence of considerable noise and artifacts, this is challenging to achieve the acceptable level with less raw speckle images. Notwithstanding, it acts poorly while learning from the original LSCI speckle contrast images because of the uneven noise distribution. To overcome this issue, an evolutionary gravitational neocognitron neural network-based blood flow velocity prediction using multiple exposure laser speckle contrast imaging (EGNNN-BFVP-MeLSCI) is proposed. Initially, the input MeLSCI datasets are collected from real-time dataset. The input picture is enhanced and noise is removed using pre-processing technique called altered phase preserving dynamic range compression (APPDRC). Gray level co-occurrence matrix (GLCM) window adaptive approach-dependent feature extraction approach is used for the preprocessed pictures. Using GLCM window adaptive method, the picture characteristics, such as intensity information, images derivative, geodesic information, contrasts, energy, correlations, homogeneity, and entropy, are retrieved. Then, the extracted features are transferred into the EGNNN classifier for accurately predicting the blood flow velocity. The performance of proposed method is executed at python and evaluated under certain performance metrics, such as accuracy, precision, sensitivity, specificity, [Formula: see text]-measure, ROC, computation time, mean squared error, root mean squared error, predicted velocity. The proposed EGNNN-BFVP-MeLSCI method attains higher accuracy of 96.31%, 97.06%, and 93.52%, lower computational time of 97.22%, 91.39%, 96.41% compared with existing approaches, like DnCNN-BFVP-MeLSCI, CFD-BFVP-MeLSCI, DLS-BFVP-MeLSCI, CNN-BFVP-MeLSCI, DBN-BFVP-MeLSCI, CGAN-BFVP-MeLSCI and MVN-BFVP-MeLSCI, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
LawShu完成签到 ,获得积分10
2秒前
飞儿随缘完成签到,获得积分10
5秒前
7秒前
紧张的败完成签到,获得积分20
9秒前
10秒前
苦杏仁发布了新的文献求助10
12秒前
13秒前
番茄发布了新的文献求助10
14秒前
dominic12361完成签到 ,获得积分10
16秒前
我是老大应助老阳采纳,获得10
17秒前
18秒前
BioRick发布了新的文献求助10
18秒前
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得10
19秒前
JPH1990应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
Singularity应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得30
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
Singularity应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
19秒前
Singularity应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
Ava应助失眠的友卉采纳,获得10
20秒前
20秒前
小王发布了新的文献求助10
21秒前
子规啼发布了新的文献求助10
24秒前
坚定的乐天完成签到,获得积分10
27秒前
竹斟酒完成签到,获得积分10
27秒前
28秒前
jeep先生完成签到,获得积分10
28秒前
fafa发布了新的文献求助10
30秒前
老阳发布了新的文献求助10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671080
求助须知:如何正确求助?哪些是违规求助? 3227979
关于积分的说明 9777835
捐赠科研通 2938188
什么是DOI,文献DOI怎么找? 1609774
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962