Multiplex SERS detection of polycyclic aromatic hydrocarbon (PAH) pollutants in water samples using gold nanostars and machine learning analysis

多环芳烃 环境化学 化学 检出限 环境科学 色谱法 有机化学
作者
Supriya Atta,Joy Qiaoyi Li,Tuan Vo‐Dinh
出处
期刊:Analyst [The Royal Society of Chemistry]
卷期号:148 (20): 5105-5116 被引量:9
标识
DOI:10.1039/d3an00636k
摘要

Polycyclic aromatic hydrocarbons (PAHs) have attracted a lot of environmental concern because of their carcinogenic and mutagenic properties, and the fact they can easily contaminate natural resources such as drinking water and river water. This study presents a simple and sensitive point-of-care SERS detection of PAHs combined with machine learning algorithms to predict the PAH content more precisely and accurately in real-life samples such as drinking water and river water. We first synthesized multibranched sharp-spiked surfactant-free gold nanostars (GNSs) that can generate strong surface-enhanced Raman scattering (SERS) signals, which were further coated with cetyltrimethylammonium bromide (CTAB) for long-term stability of the GNSs as well as to trap PAHs. We utilized CTAB-capped GNSs for solution-based 'mix and detect' SERS sensing of various PAHs including pyrene (PY), nitro-pyrene (NP), anthracene (ANT), benzo[a]pyrene (BAP), and triphenylene (TP) spiked in drinking water and river water using a portable Raman module. Very low limits of detection (LOD) were achieved in the nanomolar range for the PAHs investigated. More importantly, the detected SERS signal was reproducible for over 90 days after synthesis. Furthermore, we analyzed the SERS data using artificial intelligence (AI) with machine learning algorithms based on the convolutional neural network (CNN) model in order to discriminate the PAHs in samples more precisely and accurately. Using a CNN classification model, we achieved a high prediction accuracy of 90% in the nanomolar detection range and an f1 score (harmonic mean of precision and recall) of 94%, and using a CNN regression model, achieved an RMSEconc = 1.07 × 10-1 μM. Overall, our SERS platform can be effectively and efficiently used for the accurate detection of PAHs in real-life samples, thus opening up a new, sensitive, selective, and practical approach for point-of-need SERS diagnosis of small molecules in complex practical environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏向前发布了新的文献求助10
刚刚
1秒前
yx阿聪发布了新的文献求助10
1秒前
Akim应助善良的迎夏采纳,获得10
2秒前
tt发布了新的文献求助30
3秒前
poohpooh发布了新的文献求助30
3秒前
4秒前
qsr发布了新的文献求助10
5秒前
5秒前
陈陈陈发布了新的文献求助30
6秒前
6秒前
123完成签到,获得积分10
6秒前
了晨发布了新的文献求助10
7秒前
7秒前
酷波er应助Yoh1220采纳,获得30
8秒前
酷炫翠桃完成签到,获得积分10
8秒前
太叔从蓉完成签到,获得积分10
8秒前
羲月完成签到,获得积分10
8秒前
东瓜魔法师完成签到,获得积分10
9秒前
9秒前
隐形曼青应助baniu采纳,获得50
9秒前
LL完成签到,获得积分10
10秒前
阿雪发布了新的文献求助20
11秒前
11秒前
耍酷糖豆完成签到,获得积分20
12秒前
小桃完成签到,获得积分10
12秒前
不宁不令发布了新的文献求助30
12秒前
大聪明发布了新的文献求助10
12秒前
许阿九完成签到,获得积分10
13秒前
14秒前
14秒前
星辰大海应助小哪吒采纳,获得10
15秒前
拼搏向前完成签到,获得积分10
16秒前
冷静发布了新的文献求助10
16秒前
太叔白风完成签到,获得积分10
17秒前
17秒前
畅快新筠发布了新的文献求助50
17秒前
18秒前
18秒前
yangyang发布了新的文献求助10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144274
求助须知:如何正确求助?哪些是违规求助? 2795879
关于积分的说明 7816861
捐赠科研通 2451946
什么是DOI,文献DOI怎么找? 1304774
科研通“疑难数据库(出版商)”最低求助积分说明 627291
版权声明 601419