Classification with noisy labels through tree-based models and semi-supervised learning: A case study of lithology identification

计算机科学 噪音(视频) 鉴定(生物学) 人工智能 模式识别(心理学) 树(集合论) 人工神经网络 岩性 数据挖掘 机器学习 图像(数学) 数学 地质学 数学分析 古生物学 植物 生物
作者
Xinyi Zhu,Hongbing Zhang,Rui Zhu,Quan Ren,Lingyuan Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122506-122506 被引量:5
标识
DOI:10.1016/j.eswa.2023.122506
摘要

Lithology identification is a crucial task for reservoir characterization and evaluation. There exists an intricate non-linear response between formation lithology and logging data. However, it is difficult to avoid lithology mislabeling due to human error and interpretation coarsening, and label quality can seriously affect the effectiveness of supervised learning. The presence of noisy labels makes it essential to learn with noisy labels. Noise-filtering methods and noise-robust algorithms only concentrate on a singular aspect of data or algorithm. In this paper, hybrid noise label filtering and correction framework for lithology identification (HNFCL) is proposed. Isolation forest is utilized to detect suspicious data, as it is efficient and fast. Baseline classifiers are built by ensemble tree models. In particular, the labels of abnormal data are removed and Tri-training semi-supervised method is introduced to relabel these data, which minimizes the loss of valid training data. Comprehensive experiments of the HNFCL framework, noise filtering methods and deep neural network methods with optimized loss functions were carried out in the industrial application of logging lithology identification. HNFCL achieved average accuracy of 87.94% and 94.93% in two study wells. These results outperformed the noise filtering methods and showed no significant difference from the state-of-the-art method. The correction of noise by HNFCL will provide a prospect for lithology identification applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chemier027完成签到,获得积分10
1秒前
学术小钻风完成签到,获得积分20
1秒前
vikoel完成签到,获得积分10
1秒前
hayden完成签到,获得积分10
1秒前
77发布了新的文献求助20
2秒前
Deng完成签到,获得积分10
2秒前
深情安青应助JoshuaChen采纳,获得10
2秒前
Moscrol发布了新的文献求助10
3秒前
3秒前
黑天鹅完成签到,获得积分20
3秒前
冯宇关注了科研通微信公众号
3秒前
lin完成签到,获得积分10
3秒前
破晓完成签到,获得积分10
4秒前
5秒前
潇湘夜雨完成签到,获得积分10
5秒前
上官若男应助lane采纳,获得10
6秒前
黑天鹅发布了新的文献求助30
6秒前
科研小白完成签到,获得积分10
6秒前
neil发布了新的文献求助10
7秒前
岁月流年完成签到,获得积分10
7秒前
动听的靖琪完成签到,获得积分10
7秒前
ZhX完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
阿可阿可完成签到,获得积分10
9秒前
9秒前
桐桐应助maofeng采纳,获得10
10秒前
11秒前
ED应助李甄好采纳,获得10
11秒前
大模型应助李甄好采纳,获得10
11秒前
nkuwangkai发布了新的文献求助10
11秒前
SciGPT应助野原新之助采纳,获得10
12秒前
Jenaloe发布了新的文献求助10
12秒前
lsrlsr完成签到,获得积分10
13秒前
13秒前
大大怪发布了新的文献求助30
13秒前
14秒前
Ava应助玛琪玛小姐的狗采纳,获得10
14秒前
Lily发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582