Predictors on outcomes of cardiovascular disease of male patients in Malaysia using Bayesian network analysis

医学 贝叶斯网络 疾病 心肌梗塞 基里普班 急性冠脉综合征 内科学 经皮冠状动脉介入治疗 机器学习 计算机科学
作者
Nurliyana Juhan,Yong Zulina Zubairi,Ahmad Syadi Mahmood Zuhdi,Zarina Mohd Khalid
出处
期刊:BMJ Open [BMJ]
卷期号:13 (11): e066748-e066748
标识
DOI:10.1136/bmjopen-2022-066748
摘要

Despite extensive advances in medical and surgical treatment, cardiovascular disease (CVD) remains the leading cause of mortality worldwide. Identifying the significant predictors will help clinicians with the prognosis of the disease and patient management. This study aims to identify and interpret the dependence structure between the predictors and health outcomes of ST-elevation myocardial infarction (STEMI) male patients in Malaysian setting.Retrospective study.Malaysian National Cardiovascular Disease Database-Acute Coronary Syndrome (NCVD-ACS) registry years 2006-2013, which consists of 18 hospitals across the country.7180 male patients diagnosed with STEMI from the NCVD-ACS registry.A graphical model based on the Bayesian network (BN) approach has been considered. A bootstrap resampling approach was integrated into the structural learning algorithm to estimate probabilistic relations between the studied features that have the strongest influence and support.The relationships between 16 features in the domain of CVD were visualised. From the bootstrap resampling approach, out of 250, only 25 arcs are significant (strength value ≥0.85 and the direction value ≥0.50). Age group, Killip class and renal disease were classified as the key predictors in the BN model for male patients as they were the most influential variables directly connected to the outcome, which is the patient status. Widespread probabilistic associations between the key predictors and the remaining variables were observed in the network structure. High likelihood values are observed for patient status variable stated alive (93.8%), Killip class I on presentation (66.8%), patient younger than 65 (81.1%), smoker patient (77.2%) and ethnic Malay (59.2%). The BN model has been shown to have good predictive performance.The data visualisation analysis can be a powerful tool to understand the relationships between the CVD prognostic variables and can be useful to clinicians.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fox发布了新的文献求助10
1秒前
667788发布了新的文献求助10
1秒前
1秒前
常淼淼发布了新的文献求助10
1秒前
2秒前
丰富的听白完成签到,获得积分10
2秒前
zhonglv7应助满意花生采纳,获得10
3秒前
3秒前
4秒前
无极微光应助傲安采纳,获得20
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
Michelle完成签到,获得积分10
5秒前
5秒前
6秒前
摇摆小狗发布了新的文献求助10
6秒前
Lillian发布了新的文献求助30
6秒前
6秒前
英姑应助饶天源采纳,获得10
7秒前
7秒前
7秒前
M2106发布了新的文献求助10
7秒前
充电宝应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
香蕉诗蕊应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
9秒前
667788完成签到,获得积分10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
niNe3YUE应助科研通管家采纳,获得10
9秒前
白许四十完成签到,获得积分10
9秒前
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
la完成签到 ,获得积分10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
9秒前
田様应助Pa1mary采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711456
求助须知:如何正确求助?哪些是违规求助? 5203871
关于积分的说明 15264340
捐赠科研通 4863728
什么是DOI,文献DOI怎么找? 2610906
邀请新用户注册赠送积分活动 1561227
关于科研通互助平台的介绍 1518627