Predictors on outcomes of cardiovascular disease of male patients in Malaysia using Bayesian network analysis

医学 贝叶斯网络 疾病 心肌梗塞 基里普班 急性冠脉综合征 内科学 经皮冠状动脉介入治疗 机器学习 计算机科学
作者
Nurliyana Juhan,Yong Zulina Zubairi,Ahmad Syadi Mahmood Zuhdi,Zarina Mohd Khalid
出处
期刊:BMJ Open [BMJ]
卷期号:13 (11): e066748-e066748
标识
DOI:10.1136/bmjopen-2022-066748
摘要

Despite extensive advances in medical and surgical treatment, cardiovascular disease (CVD) remains the leading cause of mortality worldwide. Identifying the significant predictors will help clinicians with the prognosis of the disease and patient management. This study aims to identify and interpret the dependence structure between the predictors and health outcomes of ST-elevation myocardial infarction (STEMI) male patients in Malaysian setting.Retrospective study.Malaysian National Cardiovascular Disease Database-Acute Coronary Syndrome (NCVD-ACS) registry years 2006-2013, which consists of 18 hospitals across the country.7180 male patients diagnosed with STEMI from the NCVD-ACS registry.A graphical model based on the Bayesian network (BN) approach has been considered. A bootstrap resampling approach was integrated into the structural learning algorithm to estimate probabilistic relations between the studied features that have the strongest influence and support.The relationships between 16 features in the domain of CVD were visualised. From the bootstrap resampling approach, out of 250, only 25 arcs are significant (strength value ≥0.85 and the direction value ≥0.50). Age group, Killip class and renal disease were classified as the key predictors in the BN model for male patients as they were the most influential variables directly connected to the outcome, which is the patient status. Widespread probabilistic associations between the key predictors and the remaining variables were observed in the network structure. High likelihood values are observed for patient status variable stated alive (93.8%), Killip class I on presentation (66.8%), patient younger than 65 (81.1%), smoker patient (77.2%) and ethnic Malay (59.2%). The BN model has been shown to have good predictive performance.The data visualisation analysis can be a powerful tool to understand the relationships between the CVD prognostic variables and can be useful to clinicians.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fff完成签到,获得积分10
刚刚
wangxiaoyating完成签到,获得积分10
刚刚
1秒前
欢喜板凳完成签到 ,获得积分0
1秒前
大大超人关注了科研通微信公众号
2秒前
沉梦昂志_hzy完成签到,获得积分0
2秒前
orixero应助li采纳,获得10
2秒前
kmkz完成签到,获得积分10
2秒前
在水一方应助繁荣的悟空采纳,获得10
2秒前
3秒前
南宫书瑶完成签到,获得积分10
3秒前
fff发布了新的文献求助10
3秒前
3秒前
jam发布了新的文献求助20
4秒前
流萤完成签到,获得积分10
4秒前
hh关闭了hh文献求助
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
科研菜狗完成签到,获得积分10
5秒前
5秒前
美好山槐完成签到,获得积分10
5秒前
August完成签到,获得积分10
5秒前
smile完成签到,获得积分10
5秒前
daxiangjiao完成签到,获得积分10
6秒前
6秒前
飞艇发布了新的文献求助10
6秒前
李健的小迷弟应助罗克采纳,获得10
6秒前
111完成签到,获得积分10
6秒前
含蓄的安蕾完成签到,获得积分10
6秒前
舒心无剑完成签到 ,获得积分10
7秒前
7秒前
h1909完成签到,获得积分10
7秒前
左丘尔阳完成签到,获得积分10
7秒前
叁拾肆完成签到,获得积分10
7秒前
8秒前
科研菜狗发布了新的文献求助10
8秒前
负责的母鸡完成签到,获得积分10
8秒前
8秒前
Faceman完成签到,获得积分20
9秒前
cc2064完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997