Predictors on outcomes of cardiovascular disease of male patients in Malaysia using Bayesian network analysis

医学 贝叶斯网络 疾病 心肌梗塞 基里普班 急性冠脉综合征 内科学 经皮冠状动脉介入治疗 机器学习 计算机科学
作者
Nurliyana Juhan,Yong Zulina Zubairi,Ahmad Syadi Mahmood Zuhdi,Zarina Mohd Khalid
出处
期刊:BMJ Open [BMJ]
卷期号:13 (11): e066748-e066748
标识
DOI:10.1136/bmjopen-2022-066748
摘要

Despite extensive advances in medical and surgical treatment, cardiovascular disease (CVD) remains the leading cause of mortality worldwide. Identifying the significant predictors will help clinicians with the prognosis of the disease and patient management. This study aims to identify and interpret the dependence structure between the predictors and health outcomes of ST-elevation myocardial infarction (STEMI) male patients in Malaysian setting.Retrospective study.Malaysian National Cardiovascular Disease Database-Acute Coronary Syndrome (NCVD-ACS) registry years 2006-2013, which consists of 18 hospitals across the country.7180 male patients diagnosed with STEMI from the NCVD-ACS registry.A graphical model based on the Bayesian network (BN) approach has been considered. A bootstrap resampling approach was integrated into the structural learning algorithm to estimate probabilistic relations between the studied features that have the strongest influence and support.The relationships between 16 features in the domain of CVD were visualised. From the bootstrap resampling approach, out of 250, only 25 arcs are significant (strength value ≥0.85 and the direction value ≥0.50). Age group, Killip class and renal disease were classified as the key predictors in the BN model for male patients as they were the most influential variables directly connected to the outcome, which is the patient status. Widespread probabilistic associations between the key predictors and the remaining variables were observed in the network structure. High likelihood values are observed for patient status variable stated alive (93.8%), Killip class I on presentation (66.8%), patient younger than 65 (81.1%), smoker patient (77.2%) and ethnic Malay (59.2%). The BN model has been shown to have good predictive performance.The data visualisation analysis can be a powerful tool to understand the relationships between the CVD prognostic variables and can be useful to clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yx_cheng应助mgh采纳,获得10
1秒前
1秒前
zhzzhz完成签到,获得积分10
2秒前
冷酷俊驰完成签到,获得积分10
3秒前
晓山青发布了新的文献求助10
4秒前
molotov发布了新的文献求助10
5秒前
木鸽子发布了新的文献求助10
5秒前
温暖大米完成签到 ,获得积分10
6秒前
8秒前
9秒前
10秒前
CodeCraft应助今天不看文献采纳,获得10
12秒前
zz发布了新的文献求助10
12秒前
雪白凡梅完成签到 ,获得积分10
13秒前
Ava应助颜云尔采纳,获得10
13秒前
14秒前
14秒前
葛力发布了新的文献求助10
14秒前
eric888完成签到,获得积分0
15秒前
Nicole完成签到,获得积分10
16秒前
16秒前
晓山青完成签到,获得积分10
17秒前
科研通AI5应助Djnsbj采纳,获得10
17秒前
18秒前
百事从欢发布了新的文献求助10
18秒前
小马甲应助Much采纳,获得10
19秒前
叫滚滚发布了新的文献求助10
20秒前
20秒前
小甑发布了新的文献求助10
22秒前
反义词发布了新的文献求助10
22秒前
23秒前
李雷完成签到 ,获得积分10
24秒前
传奇3应助永恒采纳,获得10
25秒前
哈哈hehe发布了新的文献求助20
26秒前
顾矜应助11111采纳,获得10
29秒前
大模型应助百事从欢采纳,获得10
29秒前
29秒前
30秒前
轻松的惜芹应助can采纳,获得10
32秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517