清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predictors on outcomes of cardiovascular disease of male patients in Malaysia using Bayesian network analysis

医学 贝叶斯网络 疾病 心肌梗塞 基里普班 急性冠脉综合征 内科学 经皮冠状动脉介入治疗 机器学习 计算机科学
作者
Nurliyana Juhan,Yong Zulina Zubairi,Ahmad Syadi Mahmood Zuhdi,Zarina Mohd Khalid
出处
期刊:BMJ Open [BMJ]
卷期号:13 (11): e066748-e066748
标识
DOI:10.1136/bmjopen-2022-066748
摘要

Despite extensive advances in medical and surgical treatment, cardiovascular disease (CVD) remains the leading cause of mortality worldwide. Identifying the significant predictors will help clinicians with the prognosis of the disease and patient management. This study aims to identify and interpret the dependence structure between the predictors and health outcomes of ST-elevation myocardial infarction (STEMI) male patients in Malaysian setting.Retrospective study.Malaysian National Cardiovascular Disease Database-Acute Coronary Syndrome (NCVD-ACS) registry years 2006-2013, which consists of 18 hospitals across the country.7180 male patients diagnosed with STEMI from the NCVD-ACS registry.A graphical model based on the Bayesian network (BN) approach has been considered. A bootstrap resampling approach was integrated into the structural learning algorithm to estimate probabilistic relations between the studied features that have the strongest influence and support.The relationships between 16 features in the domain of CVD were visualised. From the bootstrap resampling approach, out of 250, only 25 arcs are significant (strength value ≥0.85 and the direction value ≥0.50). Age group, Killip class and renal disease were classified as the key predictors in the BN model for male patients as they were the most influential variables directly connected to the outcome, which is the patient status. Widespread probabilistic associations between the key predictors and the remaining variables were observed in the network structure. High likelihood values are observed for patient status variable stated alive (93.8%), Killip class I on presentation (66.8%), patient younger than 65 (81.1%), smoker patient (77.2%) and ethnic Malay (59.2%). The BN model has been shown to have good predictive performance.The data visualisation analysis can be a powerful tool to understand the relationships between the CVD prognostic variables and can be useful to clinicians.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wang_Joff完成签到,获得积分10
刚刚
先锋完成签到 ,获得积分10
1秒前
玺青一生完成签到 ,获得积分10
2秒前
4秒前
ybwei2008_163发布了新的文献求助10
9秒前
17秒前
然大宝完成签到,获得积分10
21秒前
24秒前
t铁核桃1985完成签到 ,获得积分0
27秒前
ybwei2008_163发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
36秒前
ybwei2008_163完成签到,获得积分10
53秒前
ninini完成签到 ,获得积分10
56秒前
赵李锋完成签到,获得积分10
1分钟前
slycmd完成签到,获得积分10
1分钟前
luis完成签到 ,获得积分10
1分钟前
浚稚完成签到 ,获得积分10
1分钟前
欣欣完成签到 ,获得积分10
1分钟前
莃莃莃喜欢你完成签到 ,获得积分10
1分钟前
肯德基没有黄焖鸡完成签到 ,获得积分10
1分钟前
晖菜完成签到,获得积分10
1分钟前
1分钟前
晖菜发布了新的文献求助10
1分钟前
yaomax完成签到 ,获得积分10
1分钟前
huanghe完成签到,获得积分10
1分钟前
asd1576562308完成签到 ,获得积分10
1分钟前
爬行风完成签到,获得积分10
2分钟前
朴素难敌应助科研通管家采纳,获得10
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
周博应助科研通管家采纳,获得30
2分钟前
Xzx1995完成签到 ,获得积分10
2分钟前
邱佩群完成签到 ,获得积分10
2分钟前
火蓝完成签到,获得积分10
2分钟前
忒寒碜完成签到,获得积分10
2分钟前
KYTQQ完成签到 ,获得积分10
2分钟前
sophia完成签到 ,获得积分10
2分钟前
yupaopao发布了新的文献求助10
2分钟前
可靠的一手完成签到 ,获得积分10
3分钟前
3分钟前
muzi完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664649
求助须知:如何正确求助?哪些是违规求助? 4867349
关于积分的说明 15108282
捐赠科研通 4823315
什么是DOI,文献DOI怎么找? 2582219
邀请新用户注册赠送积分活动 1536270
关于科研通互助平台的介绍 1494666