Predictors on outcomes of cardiovascular disease of male patients in Malaysia using Bayesian network analysis

医学 贝叶斯网络 疾病 心肌梗塞 基里普班 急性冠脉综合征 内科学 经皮冠状动脉介入治疗 机器学习 计算机科学
作者
Nurliyana Juhan,Yong Zulina Zubairi,Ahmad Syadi Mahmood Zuhdi,Zarina Mohd Khalid
出处
期刊:BMJ Open [BMJ]
卷期号:13 (11): e066748-e066748
标识
DOI:10.1136/bmjopen-2022-066748
摘要

Despite extensive advances in medical and surgical treatment, cardiovascular disease (CVD) remains the leading cause of mortality worldwide. Identifying the significant predictors will help clinicians with the prognosis of the disease and patient management. This study aims to identify and interpret the dependence structure between the predictors and health outcomes of ST-elevation myocardial infarction (STEMI) male patients in Malaysian setting.Retrospective study.Malaysian National Cardiovascular Disease Database-Acute Coronary Syndrome (NCVD-ACS) registry years 2006-2013, which consists of 18 hospitals across the country.7180 male patients diagnosed with STEMI from the NCVD-ACS registry.A graphical model based on the Bayesian network (BN) approach has been considered. A bootstrap resampling approach was integrated into the structural learning algorithm to estimate probabilistic relations between the studied features that have the strongest influence and support.The relationships between 16 features in the domain of CVD were visualised. From the bootstrap resampling approach, out of 250, only 25 arcs are significant (strength value ≥0.85 and the direction value ≥0.50). Age group, Killip class and renal disease were classified as the key predictors in the BN model for male patients as they were the most influential variables directly connected to the outcome, which is the patient status. Widespread probabilistic associations between the key predictors and the remaining variables were observed in the network structure. High likelihood values are observed for patient status variable stated alive (93.8%), Killip class I on presentation (66.8%), patient younger than 65 (81.1%), smoker patient (77.2%) and ethnic Malay (59.2%). The BN model has been shown to have good predictive performance.The data visualisation analysis can be a powerful tool to understand the relationships between the CVD prognostic variables and can be useful to clinicians.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AishuangQi完成签到,获得积分10
1秒前
Albert发布了新的文献求助10
1秒前
yl发布了新的文献求助10
2秒前
自由芷完成签到,获得积分20
2秒前
11发布了新的文献求助10
2秒前
tetrakis完成签到,获得积分10
2秒前
糟糕的颜发布了新的文献求助10
2秒前
打打应助江2024采纳,获得10
2秒前
小科完成签到,获得积分10
3秒前
zpp发布了新的文献求助10
3秒前
自由芷发布了新的文献求助10
4秒前
4秒前
典雅的语海完成签到,获得积分10
4秒前
乐乐应助vin采纳,获得10
5秒前
5秒前
6秒前
7秒前
小马甲应助不想学习采纳,获得10
7秒前
orixero应助高挑的鹤采纳,获得10
8秒前
潇洒的凝梦完成签到 ,获得积分10
8秒前
9秒前
迅速香芦发布了新的文献求助10
9秒前
10秒前
wxy完成签到,获得积分10
10秒前
11秒前
不是山谷发布了新的文献求助10
11秒前
sahjdkah发布了新的文献求助20
11秒前
12秒前
求助人员发布了新的文献求助50
13秒前
13秒前
果然又没人理我完成签到,获得积分10
13秒前
清秀蘑菇发布了新的文献求助10
14秒前
歪猴完成签到,获得积分10
14秒前
15秒前
Lucas应助zx采纳,获得10
15秒前
15秒前
15秒前
15秒前
寒冷的断秋完成签到,获得积分10
15秒前
Adc应助cxlll采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721182
求助须知:如何正确求助?哪些是违规求助? 5264527
关于积分的说明 15293440
捐赠科研通 4870438
什么是DOI,文献DOI怎么找? 2615484
邀请新用户注册赠送积分活动 1565349
关于科研通互助平台的介绍 1522340