Predictors on outcomes of cardiovascular disease of male patients in Malaysia using Bayesian network analysis

医学 贝叶斯网络 疾病 心肌梗塞 基里普班 急性冠脉综合征 内科学 经皮冠状动脉介入治疗 机器学习 计算机科学
作者
Nurliyana Juhan,Yong Zulina Zubairi,Ahmad Syadi Mahmood Zuhdi,Zarina Mohd Khalid
出处
期刊:BMJ Open [BMJ]
卷期号:13 (11): e066748-e066748
标识
DOI:10.1136/bmjopen-2022-066748
摘要

Despite extensive advances in medical and surgical treatment, cardiovascular disease (CVD) remains the leading cause of mortality worldwide. Identifying the significant predictors will help clinicians with the prognosis of the disease and patient management. This study aims to identify and interpret the dependence structure between the predictors and health outcomes of ST-elevation myocardial infarction (STEMI) male patients in Malaysian setting.Retrospective study.Malaysian National Cardiovascular Disease Database-Acute Coronary Syndrome (NCVD-ACS) registry years 2006-2013, which consists of 18 hospitals across the country.7180 male patients diagnosed with STEMI from the NCVD-ACS registry.A graphical model based on the Bayesian network (BN) approach has been considered. A bootstrap resampling approach was integrated into the structural learning algorithm to estimate probabilistic relations between the studied features that have the strongest influence and support.The relationships between 16 features in the domain of CVD were visualised. From the bootstrap resampling approach, out of 250, only 25 arcs are significant (strength value ≥0.85 and the direction value ≥0.50). Age group, Killip class and renal disease were classified as the key predictors in the BN model for male patients as they were the most influential variables directly connected to the outcome, which is the patient status. Widespread probabilistic associations between the key predictors and the remaining variables were observed in the network structure. High likelihood values are observed for patient status variable stated alive (93.8%), Killip class I on presentation (66.8%), patient younger than 65 (81.1%), smoker patient (77.2%) and ethnic Malay (59.2%). The BN model has been shown to have good predictive performance.The data visualisation analysis can be a powerful tool to understand the relationships between the CVD prognostic variables and can be useful to clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助起昵称好困难采纳,获得10
1秒前
彭于晏应助18922406869采纳,获得10
2秒前
妮妮发布了新的文献求助10
3秒前
xu发布了新的文献求助30
3秒前
LabRat完成签到 ,获得积分10
4秒前
6秒前
8秒前
9秒前
瓜娃子完成签到,获得积分10
10秒前
无花果应助kk采纳,获得10
10秒前
初晴发布了新的文献求助10
11秒前
成就的书包完成签到,获得积分10
11秒前
酷波er应助yecheng采纳,获得10
11秒前
11秒前
12秒前
11完成签到 ,获得积分10
13秒前
舟车靡从发布了新的文献求助20
14秒前
AFF完成签到,获得积分10
14秒前
shanjianjie发布了新的文献求助20
14秒前
瓜娃子发布了新的文献求助10
14秒前
Owen应助大菠萝采纳,获得10
15秒前
16秒前
李健的小迷弟应助摸鱼ing采纳,获得30
17秒前
大模型应助左慕山采纳,获得10
17秒前
糖炒栗子发布了新的文献求助100
17秒前
科研通AI2S应助才疏学浅采纳,获得10
17秒前
蓝天海完成签到,获得积分0
17秒前
顺利琦发布了新的文献求助10
17秒前
Jack应助时尚的青丝采纳,获得10
18秒前
完美世界应助完美的海秋采纳,获得10
18秒前
18秒前
18秒前
berry完成签到,获得积分10
19秒前
Owen应助zn315315采纳,获得10
19秒前
susu发布了新的文献求助10
20秒前
慕青应助清心淡如水采纳,获得10
20秒前
基围虾完成签到,获得积分10
21秒前
你好好好完成签到,获得积分10
21秒前
扎心应助我我采纳,获得10
22秒前
xiao金发布了新的文献求助10
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244208
求助须知:如何正确求助?哪些是违规求助? 2887923
关于积分的说明 8250569
捐赠科研通 2556491
什么是DOI,文献DOI怎么找? 1384754
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 626000