Dynamic tunable narrow-band perfect absorber for fiber -optic communication band based on liquid crystal

材料科学 光学 吸收(声学) 极化(电化学) 液晶 各向异性 光电子学 折射率 电子能带结构 波长 凝聚态物理 物理 化学 复合材料 物理化学
作者
Mingliang Liu,Boxun Li,Lili Zeng,Yi Wei,Ruquan Wen,Xingjiao Zhang,Chao‐Sheng Deng
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:56 (50): 505102-505102 被引量:67
标识
DOI:10.1088/1361-6463/acfaab
摘要

Abstract At present, most of the reported metasurface structure absorbers show that its working band cannot be regulated actively. In this study, a dynamic tunable narrow-band perfect absorption structure for fiber-optic communication band based on liquid crystal (LC) is proposed and studied. The structure is mainly composed of two effective tiers. The top tier gold array and the bottom tier reflective gold film, which are separated by a SiO 2 -LC dielectric medium interlayer to form a metal–dielectric–metal structure. Due to the unique optical properties of LCs, its index of refraction can be changed by adjusting the bias voltage and temperature, so as to adjust the resonance wavelength actively. The designed structure is analyzed by finite element method and the coupled mode theory is used to verify the analysis results. The designed structure has a 99.92% absorption effect in the most commonly used band of fiber-optic communication. Due to the symmetry of the absorber structure, the device is not sensitive to the polarization state of the excitation source. Moreover, the absorber exhibits an unusual dependence on the incident angle, which can be attributed to the anisotropy of the LC. Based on the dependence of incident angle, a plasma optical switch with large ON/OFF ratio ( η ) of 27.395 dB and nearly flawless modulation depth of 99.818% can be realized. It is believed that this structure can provide a method for the dynamic control of near infrared electromagnetic waves, and to be applied in electromagnetic energy absorption, filtering and plasma optical switch system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助adamwang采纳,获得10
1秒前
1秒前
HCT发布了新的文献求助10
1秒前
3秒前
Kondo发布了新的文献求助10
4秒前
小鱼完成签到 ,获得积分10
5秒前
一一应助有意义采纳,获得10
5秒前
5秒前
橘猫完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
求求你帮帮我完成签到,获得积分10
6秒前
共享精神应助珊珊采纳,获得10
6秒前
共享精神应助禹宛白采纳,获得10
6秒前
6秒前
7秒前
长情的小鸽子完成签到,获得积分10
7秒前
157295108发布了新的文献求助10
8秒前
烟花应助zxcvvbnm采纳,获得10
8秒前
8秒前
阔达如松发布了新的文献求助10
8秒前
WNL发布了新的文献求助10
8秒前
坚强水杯发布了新的文献求助60
9秒前
11秒前
善学以致用应助oue采纳,获得10
11秒前
11秒前
11秒前
HCT完成签到,获得积分10
12秒前
12秒前
12秒前
limerence发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助玥越采纳,获得10
13秒前
1chen完成签到 ,获得积分10
13秒前
14秒前
刘霆勋发布了新的文献求助10
14秒前
哪位完成签到,获得积分10
14秒前
风吹麦田应助fish采纳,获得100
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802