An Intelligent Fault Diagnosis Method Enhanced by Noise Injection for Machinery

噪音(视频) 断层(地质) 高斯噪声 噪声测量 随机共振 计算机科学 人工智能 工程类 模式识别(心理学) 控制理论(社会学) 降噪 控制(管理) 地震学 图像(数学) 地质学
作者
Changpu Yang,Zijian Qiao,Ronghua Zhu,Xuefang Xu,Zhihui Lai,Shengtong Zhou
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:30
标识
DOI:10.1109/tim.2023.3322488
摘要

Machinery generally operates under severe and complex conditions and therefore the monitoring signals acquired from machinery would inevitably be accompanied by various types of noise in the process of data acquisition. Noise would result in the instability of intelligent fault diagnosis and prediction models and decline their recognition and prediction accuracy. In stochastic resonance, however, noise is beneficial to weak signal detection and intelligent image classification, while the research on the benefits of noise in mechanical intelligent fault diagnosis is still rare. For this purpose, the benefits of noise to the intelligent fault diagnosis are studied in this paper by injecting different levels of Gaussian and uniform noise to intelligent fault diagnosis models and even their input data sets. Then, an intelligent fault diagnosis method enhanced by injecting moderate noise is proposed to improve the classification accuracy of those ones without noise injection. Finally, three experiments including hydraulic motors and two different motor bearings were performed to verify the proposed method. The experimental results show that the diagnosis accuracy of hydraulic motors and two different motor bearings after noise injection is 95%, 95.6% and 97.5% respectively, which is increased by 1.4%, 1.6% and 1.1% than those without noise injection. Comparing the experimental results by injecting two different types of noise, all of them have the same optimal noise level to achieve fairly high classification accuracy. In addition, it is found that the diagnosis accuracy by injecting Gaussian noise is higher than that by injecting uniform noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
大气的妙松完成签到,获得积分20
2秒前
zedmaster发布了新的文献求助10
3秒前
ljn0406完成签到 ,获得积分10
4秒前
深情安青应助张wx_100采纳,获得10
4秒前
qizhia发布了新的文献求助10
6秒前
彩色嚣完成签到 ,获得积分10
7秒前
rodney2023发布了新的文献求助10
7秒前
端庄的访枫完成签到 ,获得积分10
8秒前
科研通AI2S应助十一采纳,获得10
9秒前
鲤鱼萧完成签到,获得积分20
10秒前
zedmaster完成签到,获得积分10
10秒前
科目三应助GT采纳,获得10
11秒前
搜集达人应助李哈哈采纳,获得10
12秒前
ShawnaChan发布了新的文献求助10
12秒前
12秒前
orixero应助Qinghua采纳,获得10
13秒前
111完成签到,获得积分20
13秒前
13秒前
qizhia完成签到,获得积分10
14秒前
科目三应助aman采纳,获得10
14秒前
我是老大应助石头采纳,获得10
15秒前
呆萌刺猬完成签到 ,获得积分10
15秒前
16秒前
英勇剑完成签到 ,获得积分10
16秒前
沈three发布了新的文献求助10
18秒前
19秒前
rodney2023完成签到,获得积分20
21秒前
21秒前
苯巴比妥不妥完成签到,获得积分10
21秒前
扬帆发布了新的文献求助10
22秒前
22秒前
CX完成签到,获得积分10
23秒前
23秒前
李哈哈发布了新的文献求助10
24秒前
小董哥完成签到,获得积分10
24秒前
多情以山完成签到 ,获得积分10
25秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464156
求助须知:如何正确求助?哪些是违规求助? 3057470
关于积分的说明 9057304
捐赠科研通 2747508
什么是DOI,文献DOI怎么找? 1507390
科研通“疑难数据库(出版商)”最低求助积分说明 696514
邀请新用户注册赠送积分活动 696062