Bandits atop Reinforcement Learning: Tackling Online Inventory Models with Cyclic Demands

后悔 杠杆(统计) 强化学习 计算机科学 上下界 匹配(统计) 订单(交换) 先验与后验 数学优化 数理经济学 经济 人工智能 数学 机器学习 统计 数学分析 哲学 财务 认识论
作者
X. H. Gong,David Simchi‐Levi
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:8
标识
DOI:10.1287/mnsc.2023.4947
摘要

Motivated by a long-standing gap between inventory theory and practice, we study online inventory models with unknown cyclic demand distributions. We design provably efficient reinforcement learning (RL) algorithms that leverage the structure of inventory problems to achieve optimal theoretical guarantees that surpass existing results. We apply the standard performance measure in online learning literature, regret, which is defined as the difference between the total expected cost of our policy and the total expected cost of the clairvoyant optimal policy that has full knowledge of the demand distributions a priori. This paper analyzes, in the presence of unknown cyclic demands, both the lost-sales model with zero lead time and the multiproduct backlogging model with positive lead times, fixed joint-ordering costs and order limits. For both models, we first introduce episodic models where inventory is discarded at the end of every cycle, and then build upon these results to analyze the nondiscarding models. Our RL policies HQL and FQL achieve [Formula: see text] regret for the episodic lost-sales model and the episodic multiproduct backlogging model, matching the regret lower bound that we prove in this paper. For the nondiscarding models, we construct a bandit learning algorithm on top that governs multiple copies of the previous RL algorithms, named Meta-HQL. Meta-HQL achieves [Formula: see text] regret for the nondiscarding lost-sales model with zero lead time, again matching the regret lower bound. For the nondiscarding multiproduct backlogging model, our policy Mimic-QL achieves [Formula: see text] regret. Our policies remove the regret dependence on the cardinality of the state-action space for inventory problems, which is an improvement over existing RL algorithms. We conducted experiments with a real sales data set from Rossmann, one of the largest drugstore chains in Europe, and also with a synthetic data set. For both sets of experiments, our policy converges rapidly to the optimal policy and dramatically outperforms the best policy that models demand as independent and identically distributed instead of cyclic. This paper was accepted by J. George Shanthikumar, data science. Funding: X.-Y. Gong was partially supported by an Accenture Fellowship. The work of X.-Y. Gong and D. Simchi-Levi was partially supported by the MIT Data Science Lab. Supplemental Material: The data and online appendices are available at https://doi.org/10.1287/mnsc.2023.4947 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
来轩发布了新的文献求助10
刚刚
chen完成签到,获得积分10
刚刚
吃葡萄不吐完成签到,获得积分10
刚刚
英俊的铭应助Refuel采纳,获得10
1秒前
精明书桃完成签到 ,获得积分10
2秒前
丘比特应助万泉部诗人采纳,获得10
2秒前
乐乐应助犇骉采纳,获得10
2秒前
Japrin完成签到,获得积分10
2秒前
3秒前
柠檬完成签到 ,获得积分10
3秒前
3秒前
酷波er应助美好的莫英采纳,获得10
3秒前
懒得想名字完成签到,获得积分20
3秒前
liu完成签到,获得积分20
3秒前
mudiboyang完成签到,获得积分10
4秒前
李健应助禹丹烟采纳,获得10
4秒前
史超完成签到,获得积分10
5秒前
6秒前
来轩完成签到,获得积分10
6秒前
酷波er应助大雷采纳,获得10
6秒前
6秒前
yang完成签到,获得积分10
6秒前
7秒前
7秒前
reform完成签到,获得积分10
7秒前
望都发布了新的文献求助10
7秒前
大力蚂蚁发布了新的文献求助10
8秒前
生动的草莓完成签到 ,获得积分10
8秒前
raye完成签到,获得积分10
9秒前
完美诺言发布了新的文献求助10
9秒前
10秒前
liu发布了新的文献求助30
10秒前
10秒前
阔达的扬完成签到,获得积分10
10秒前
海上森林的一只猫完成签到 ,获得积分10
11秒前
strive完成签到 ,获得积分10
11秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147236
求助须知:如何正确求助?哪些是违规求助? 2798534
关于积分的说明 7829576
捐赠科研通 2455246
什么是DOI,文献DOI怎么找? 1306655
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567