Bandits atop Reinforcement Learning: Tackling Online Inventory Models with Cyclic Demands

后悔 杠杆(统计) 强化学习 计算机科学 上下界 匹配(统计) 订单(交换) 先验与后验 数学优化 数理经济学 经济 人工智能 数学 机器学习 统计 数学分析 哲学 财务 认识论
作者
X. H. Gong,David Simchi‐Levi
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:13
标识
DOI:10.1287/mnsc.2023.4947
摘要

Motivated by a long-standing gap between inventory theory and practice, we study online inventory models with unknown cyclic demand distributions. We design provably efficient reinforcement learning (RL) algorithms that leverage the structure of inventory problems to achieve optimal theoretical guarantees that surpass existing results. We apply the standard performance measure in online learning literature, regret, which is defined as the difference between the total expected cost of our policy and the total expected cost of the clairvoyant optimal policy that has full knowledge of the demand distributions a priori. This paper analyzes, in the presence of unknown cyclic demands, both the lost-sales model with zero lead time and the multiproduct backlogging model with positive lead times, fixed joint-ordering costs and order limits. For both models, we first introduce episodic models where inventory is discarded at the end of every cycle, and then build upon these results to analyze the nondiscarding models. Our RL policies HQL and FQL achieve [Formula: see text] regret for the episodic lost-sales model and the episodic multiproduct backlogging model, matching the regret lower bound that we prove in this paper. For the nondiscarding models, we construct a bandit learning algorithm on top that governs multiple copies of the previous RL algorithms, named Meta-HQL. Meta-HQL achieves [Formula: see text] regret for the nondiscarding lost-sales model with zero lead time, again matching the regret lower bound. For the nondiscarding multiproduct backlogging model, our policy Mimic-QL achieves [Formula: see text] regret. Our policies remove the regret dependence on the cardinality of the state-action space for inventory problems, which is an improvement over existing RL algorithms. We conducted experiments with a real sales data set from Rossmann, one of the largest drugstore chains in Europe, and also with a synthetic data set. For both sets of experiments, our policy converges rapidly to the optimal policy and dramatically outperforms the best policy that models demand as independent and identically distributed instead of cyclic. This paper was accepted by J. George Shanthikumar, data science. Funding: X.-Y. Gong was partially supported by an Accenture Fellowship. The work of X.-Y. Gong and D. Simchi-Levi was partially supported by the MIT Data Science Lab. Supplemental Material: The data and online appendices are available at https://doi.org/10.1287/mnsc.2023.4947 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术小天才完成签到 ,获得积分10
1秒前
cc发布了新的文献求助10
3秒前
4秒前
5秒前
裘山彤发布了新的文献求助10
6秒前
记得吃早饭完成签到 ,获得积分10
7秒前
kiki发布了新的文献求助30
8秒前
金宁发布了新的文献求助10
8秒前
嘻嘻完成签到,获得积分20
11秒前
苏紫梗桔完成签到,获得积分10
12秒前
ll发布了新的文献求助10
14秒前
关我屁事完成签到 ,获得积分10
16秒前
金宁完成签到,获得积分10
18秒前
miaomliu完成签到,获得积分10
21秒前
乐乐应助裘山彤采纳,获得10
25秒前
喻槿发布了新的文献求助10
26秒前
37秒前
37秒前
喻槿完成签到,获得积分10
42秒前
qiao发布了新的文献求助10
42秒前
英俊的铭应助喻槿采纳,获得10
47秒前
隐形曼青应助lcr采纳,获得10
48秒前
49秒前
51秒前
51秒前
51秒前
52秒前
52秒前
52秒前
52秒前
52秒前
52秒前
52秒前
在水一方应助科研通管家采纳,获得10
52秒前
英俊的铭应助科研通管家采纳,获得10
53秒前
53秒前
kiki完成签到,获得积分10
54秒前
魏头头发布了新的文献求助10
55秒前
辣目童子完成签到 ,获得积分10
58秒前
59秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852126
求助须知:如何正确求助?哪些是违规求助? 6276113
关于积分的说明 15627658
捐赠科研通 4968034
什么是DOI,文献DOI怎么找? 2678871
邀请新用户注册赠送积分活动 1623127
关于科研通互助平台的介绍 1579506