亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bandits atop Reinforcement Learning: Tackling Online Inventory Models with Cyclic Demands

后悔 杠杆(统计) 强化学习 计算机科学 上下界 匹配(统计) 订单(交换) 先验与后验 数学优化 数理经济学 经济 人工智能 数学 机器学习 统计 数学分析 哲学 财务 认识论
作者
X. H. Gong,David Simchi‐Levi
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:13
标识
DOI:10.1287/mnsc.2023.4947
摘要

Motivated by a long-standing gap between inventory theory and practice, we study online inventory models with unknown cyclic demand distributions. We design provably efficient reinforcement learning (RL) algorithms that leverage the structure of inventory problems to achieve optimal theoretical guarantees that surpass existing results. We apply the standard performance measure in online learning literature, regret, which is defined as the difference between the total expected cost of our policy and the total expected cost of the clairvoyant optimal policy that has full knowledge of the demand distributions a priori. This paper analyzes, in the presence of unknown cyclic demands, both the lost-sales model with zero lead time and the multiproduct backlogging model with positive lead times, fixed joint-ordering costs and order limits. For both models, we first introduce episodic models where inventory is discarded at the end of every cycle, and then build upon these results to analyze the nondiscarding models. Our RL policies HQL and FQL achieve [Formula: see text] regret for the episodic lost-sales model and the episodic multiproduct backlogging model, matching the regret lower bound that we prove in this paper. For the nondiscarding models, we construct a bandit learning algorithm on top that governs multiple copies of the previous RL algorithms, named Meta-HQL. Meta-HQL achieves [Formula: see text] regret for the nondiscarding lost-sales model with zero lead time, again matching the regret lower bound. For the nondiscarding multiproduct backlogging model, our policy Mimic-QL achieves [Formula: see text] regret. Our policies remove the regret dependence on the cardinality of the state-action space for inventory problems, which is an improvement over existing RL algorithms. We conducted experiments with a real sales data set from Rossmann, one of the largest drugstore chains in Europe, and also with a synthetic data set. For both sets of experiments, our policy converges rapidly to the optimal policy and dramatically outperforms the best policy that models demand as independent and identically distributed instead of cyclic. This paper was accepted by J. George Shanthikumar, data science. Funding: X.-Y. Gong was partially supported by an Accenture Fellowship. The work of X.-Y. Gong and D. Simchi-Levi was partially supported by the MIT Data Science Lab. Supplemental Material: The data and online appendices are available at https://doi.org/10.1287/mnsc.2023.4947 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunny完成签到 ,获得积分10
2秒前
orixero应助高源伯采纳,获得10
24秒前
25秒前
30秒前
合适寄松发布了新的文献求助20
30秒前
大yo知闲闲完成签到 ,获得积分10
31秒前
高源伯发布了新的文献求助10
36秒前
财路通八方完成签到 ,获得积分10
36秒前
昔黎完成签到 ,获得积分10
38秒前
maprang完成签到,获得积分10
40秒前
43秒前
shaylie完成签到 ,获得积分10
48秒前
zzz发布了新的文献求助10
48秒前
Orange应助科研通管家采纳,获得10
55秒前
共享精神应助科研通管家采纳,获得30
55秒前
LLL完成签到 ,获得积分10
1分钟前
1分钟前
Sunny完成签到 ,获得积分10
1分钟前
碗在水中央完成签到 ,获得积分10
1分钟前
安详的惜梦完成签到,获得积分20
1分钟前
Akim应助开心雅寒采纳,获得10
1分钟前
清脆沛山发布了新的文献求助30
1分钟前
1分钟前
开心雅寒发布了新的文献求助10
1分钟前
national完成签到,获得积分10
1分钟前
三岁完成签到 ,获得积分10
1分钟前
开心雅寒完成签到,获得积分10
1分钟前
Blue完成签到 ,获得积分10
1分钟前
1分钟前
national发布了新的文献求助10
1分钟前
王丹靖完成签到 ,获得积分10
2分钟前
我爱读文献完成签到,获得积分10
2分钟前
迷路擎宇发布了新的文献求助10
2分钟前
磊少完成签到,获得积分10
2分钟前
迷路擎宇完成签到,获得积分20
2分钟前
NexusExplorer应助尊敬的臻采纳,获得10
2分钟前
2分钟前
YUEER发布了新的文献求助10
2分钟前
三年三班三井寿完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880437
求助须知:如何正确求助?哪些是违规求助? 6572351
关于积分的说明 15689876
捐赠科研通 5000124
什么是DOI,文献DOI怎么找? 2694209
邀请新用户注册赠送积分活动 1636018
关于科研通互助平台的介绍 1593447