清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bandits atop Reinforcement Learning: Tackling Online Inventory Models with Cyclic Demands

后悔 杠杆(统计) 强化学习 计算机科学 上下界 匹配(统计) 订单(交换) 先验与后验 数学优化 数理经济学 经济 人工智能 数学 机器学习 统计 数学分析 哲学 财务 认识论
作者
X. H. Gong,David Simchi‐Levi
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:9
标识
DOI:10.1287/mnsc.2023.4947
摘要

Motivated by a long-standing gap between inventory theory and practice, we study online inventory models with unknown cyclic demand distributions. We design provably efficient reinforcement learning (RL) algorithms that leverage the structure of inventory problems to achieve optimal theoretical guarantees that surpass existing results. We apply the standard performance measure in online learning literature, regret, which is defined as the difference between the total expected cost of our policy and the total expected cost of the clairvoyant optimal policy that has full knowledge of the demand distributions a priori. This paper analyzes, in the presence of unknown cyclic demands, both the lost-sales model with zero lead time and the multiproduct backlogging model with positive lead times, fixed joint-ordering costs and order limits. For both models, we first introduce episodic models where inventory is discarded at the end of every cycle, and then build upon these results to analyze the nondiscarding models. Our RL policies HQL and FQL achieve [Formula: see text] regret for the episodic lost-sales model and the episodic multiproduct backlogging model, matching the regret lower bound that we prove in this paper. For the nondiscarding models, we construct a bandit learning algorithm on top that governs multiple copies of the previous RL algorithms, named Meta-HQL. Meta-HQL achieves [Formula: see text] regret for the nondiscarding lost-sales model with zero lead time, again matching the regret lower bound. For the nondiscarding multiproduct backlogging model, our policy Mimic-QL achieves [Formula: see text] regret. Our policies remove the regret dependence on the cardinality of the state-action space for inventory problems, which is an improvement over existing RL algorithms. We conducted experiments with a real sales data set from Rossmann, one of the largest drugstore chains in Europe, and also with a synthetic data set. For both sets of experiments, our policy converges rapidly to the optimal policy and dramatically outperforms the best policy that models demand as independent and identically distributed instead of cyclic. This paper was accepted by J. George Shanthikumar, data science. Funding: X.-Y. Gong was partially supported by an Accenture Fellowship. The work of X.-Y. Gong and D. Simchi-Levi was partially supported by the MIT Data Science Lab. Supplemental Material: The data and online appendices are available at https://doi.org/10.1287/mnsc.2023.4947 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青树柠檬完成签到 ,获得积分10
31秒前
上官若男应助王月缶采纳,获得10
33秒前
vbnn完成签到 ,获得积分10
41秒前
42秒前
大医仁心完成签到 ,获得积分10
45秒前
王月缶发布了新的文献求助10
46秒前
58秒前
1分钟前
传奇3应助认真的善若采纳,获得10
1分钟前
善学以致用应助葛力采纳,获得10
1分钟前
1分钟前
王月缶完成签到,获得积分20
1分钟前
Hello应助一这那西采纳,获得30
1分钟前
muriel完成签到,获得积分0
1分钟前
如歌完成签到,获得积分10
1分钟前
2分钟前
yusovegoistt完成签到,获得积分10
2分钟前
yusovegoistt发布了新的文献求助10
2分钟前
葛力发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
FashionBoy应助yusovegoistt采纳,获得10
2分钟前
sln完成签到,获得积分0
3分钟前
sora98完成签到 ,获得积分10
3分钟前
月上柳梢头A1完成签到,获得积分10
3分钟前
蝎子莱莱xth完成签到,获得积分10
3分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
3分钟前
Square完成签到,获得积分10
3分钟前
zm完成签到 ,获得积分10
3分钟前
淡然的剑通完成签到 ,获得积分10
4分钟前
紫熊发布了新的文献求助10
4分钟前
ljx完成签到 ,获得积分10
4分钟前
3927456843完成签到,获得积分10
5分钟前
李健应助YY采纳,获得30
5分钟前
5分钟前
5分钟前
DustxhX发布了新的文献求助10
5分钟前
自然亦凝完成签到,获得积分10
6分钟前
欣欣完成签到 ,获得积分10
6分钟前
迷茫的一代完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957970
求助须知:如何正确求助?哪些是违规求助? 4219190
关于积分的说明 13133262
捐赠科研通 4002249
什么是DOI,文献DOI怎么找? 2190284
邀请新用户注册赠送积分活动 1205015
关于科研通互助平台的介绍 1116638