Deep Learning Dynamic Allostery of G-Protein-Coupled Receptors

变构调节 G蛋白偶联受体 化学 变构调节剂 对接(动物) 生物物理学 能源景观 变构酶 计算生物学 分子动力学 药物发现 受体 生物化学 生物 计算化学 医学 护理部
作者
N. Hung,Jinan Wang,Yinglong Miao
出处
期刊:JACS Au [American Chemical Society]
卷期号:3 (11): 3165-3180 被引量:14
标识
DOI:10.1021/jacsau.3c00503
摘要

G-protein-coupled receptors (GPCRs) make up the largest superfamily of human membrane proteins and represent primary targets of ∼1/3 of currently marketed drugs. Allosteric modulators have emerged as more selective drug candidates compared with orthosteric agonists and antagonists. However, many X-ray and cryo-EM structures of GPCRs resolved so far exhibit negligible differences upon the binding of positive and negative allosteric modulators (PAMs and NAMs). The mechanism of dynamic allosteric modulation in GPCRs remains unclear. In this work, we have systematically mapped dynamic changes in free energy landscapes of GPCRs upon binding of allosteric modulators using the Gaussian accelerated molecular dynamics (GaMD), deep learning (DL), and free energy prOfiling Workflow (GLOW). GaMD simulations were performed for a total of 66 μs on 44 GPCR systems in the presence and absence of the modulator. DL and free energy calculations revealed significantly reduced dynamic fluctuations and conformational space of GPCRs upon modulator binding. While the modulator-free GPCRs often sampled multiple low-energy conformational states, the NAMs and PAMs confined the inactive and active agonist-G-protein-bound GPCRs, respectively, to mostly only one specific conformation for signaling. Such cooperative effects were significantly reduced for binding of the selective modulators to "non-cognate" receptor subtypes. Therefore, GPCR allostery exhibits a dynamic "conformational selection" mechanism. In the absence of available modulator-bound structures as for most current GPCRs, it is critical to use a structural ensemble of representative GPCR conformations rather than a single structure for compound docking ("ensemble docking"), which will potentially improve structure-based design of novel allosteric drugs of GPCRs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助ABC的风格采纳,获得10
刚刚
baron_lin发布了新的文献求助10
刚刚
研友_LN7x6n发布了新的文献求助30
1秒前
852应助风风采纳,获得10
1秒前
Dailalala完成签到,获得积分10
1秒前
2秒前
安静心情发布了新的文献求助10
2秒前
丘比特应助竞鹤采纳,获得10
2秒前
香蕉觅云应助高很帅采纳,获得10
2秒前
3秒前
3秒前
司空天磊发布了新的文献求助10
3秒前
Hydaniel发布了新的文献求助10
3秒前
dd36完成签到,获得积分10
4秒前
昵称11发布了新的文献求助10
6秒前
Owen应助Huguizhou采纳,获得10
6秒前
韩涵完成签到 ,获得积分10
6秒前
充电宝应助2499297293采纳,获得10
6秒前
aich完成签到,获得积分10
6秒前
鲅鱼圈完成签到,获得积分10
7秒前
8秒前
一朵梅花完成签到,获得积分10
8秒前
咕噜仔完成签到,获得积分10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得30
9秒前
Hello应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
LewisAcid应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342