Deep Learning Dynamic Allostery of G-Protein-Coupled Receptors

变构调节 G蛋白偶联受体 化学 变构调节剂 对接(动物) 生物物理学 能源景观 变构酶 计算生物学 分子动力学 药物发现 受体 生物化学 生物 计算化学 医学 护理部
作者
N. Hung,Jinan Wang,Yinglong Miao
出处
期刊:JACS Au [American Chemical Society]
卷期号:3 (11): 3165-3180 被引量:14
标识
DOI:10.1021/jacsau.3c00503
摘要

G-protein-coupled receptors (GPCRs) make up the largest superfamily of human membrane proteins and represent primary targets of ∼1/3 of currently marketed drugs. Allosteric modulators have emerged as more selective drug candidates compared with orthosteric agonists and antagonists. However, many X-ray and cryo-EM structures of GPCRs resolved so far exhibit negligible differences upon the binding of positive and negative allosteric modulators (PAMs and NAMs). The mechanism of dynamic allosteric modulation in GPCRs remains unclear. In this work, we have systematically mapped dynamic changes in free energy landscapes of GPCRs upon binding of allosteric modulators using the Gaussian accelerated molecular dynamics (GaMD), deep learning (DL), and free energy prOfiling Workflow (GLOW). GaMD simulations were performed for a total of 66 μs on 44 GPCR systems in the presence and absence of the modulator. DL and free energy calculations revealed significantly reduced dynamic fluctuations and conformational space of GPCRs upon modulator binding. While the modulator-free GPCRs often sampled multiple low-energy conformational states, the NAMs and PAMs confined the inactive and active agonist-G-protein-bound GPCRs, respectively, to mostly only one specific conformation for signaling. Such cooperative effects were significantly reduced for binding of the selective modulators to "non-cognate" receptor subtypes. Therefore, GPCR allostery exhibits a dynamic "conformational selection" mechanism. In the absence of available modulator-bound structures as for most current GPCRs, it is critical to use a structural ensemble of representative GPCR conformations rather than a single structure for compound docking ("ensemble docking"), which will potentially improve structure-based design of novel allosteric drugs of GPCRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暗夜星辰完成签到,获得积分0
1秒前
高妖丽发布了新的文献求助10
1秒前
可爱半凡发布了新的文献求助10
2秒前
zeb完成签到,获得积分10
4秒前
缥缈老九完成签到,获得积分10
4秒前
外向以云关注了科研通微信公众号
5秒前
5秒前
LJJ发布了新的文献求助10
6秒前
魔幻如凡完成签到,获得积分10
7秒前
LL完成签到,获得积分20
9秒前
完美世界应助我不是胖子采纳,获得10
9秒前
FashionBoy应助高妖丽采纳,获得10
9秒前
wsq完成签到,获得积分10
9秒前
大模型应助可爱半凡采纳,获得10
10秒前
hyhyhyhy发布了新的文献求助10
11秒前
11秒前
麋鹿完成签到 ,获得积分10
12秒前
12秒前
526关注了科研通微信公众号
13秒前
MMMMM发布了新的文献求助150
16秒前
NexusExplorer应助jssssssss采纳,获得10
16秒前
学术小猫完成签到,获得积分20
17秒前
微笑亿先发布了新的文献求助10
18秒前
nozomi发布了新的文献求助10
18秒前
努力的科研小白完成签到 ,获得积分10
20秒前
21秒前
willing发布了新的文献求助100
21秒前
深情安青应助1111采纳,获得10
21秒前
英姑应助Eillen采纳,获得10
22秒前
萧水白应助liuxialiumin采纳,获得10
22秒前
22秒前
默默的白梅完成签到,获得积分10
24秒前
科研通AI2S应助Sparkle采纳,获得10
24秒前
sissiarno应助Sparkle采纳,获得30
24秒前
24秒前
个性向珊关注了科研通微信公众号
24秒前
26秒前
大师应助科研通管家采纳,获得10
26秒前
小马甲应助科研通管家采纳,获得10
26秒前
领导范儿应助科研通管家采纳,获得10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310243
求助须知:如何正确求助?哪些是违规求助? 2943212
关于积分的说明 8513174
捐赠科研通 2618448
什么是DOI,文献DOI怎么找? 1431076
科研通“疑难数据库(出版商)”最低求助积分说明 664359
邀请新用户注册赠送积分活动 649542