已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Probabilistic damage identification of FGM structures using model updating procedure based on expansion of incomplete FRF data

概率逻辑 噪音(视频) 鉴定(生物学) 算法 启发式 刚度 缩小 计算机科学 数学优化 工程类 数学 结构工程 人工智能 植物 图像(数学) 生物
作者
Du Dinh-Cong,T. Nguyen-Thoi
出处
期刊:Structures [Elsevier]
卷期号:58: 105549-105549
标识
DOI:10.1016/j.istruc.2023.105549
摘要

The spatial incompleteness and uncertainties of measured data are unavoidable factors that could significantly affect the reliability of damage detection results. It is therefore essential to utilize a method that can effectively deal with the spatial incomplete and contaminated data, and presents probabilistic damage identification results instead of deterministic results. In this regard, a probabilistic damage identification approach for functionally graded materials (FGM) structures using model updating procedure based on expansion of incomplete frequency response function (FRF) data with measurement noise is presented. The model updating procedure is formulated as an optimization scheme which is accomplished by minimizing a cost function based on the changes in expanded FRF data. To expand the incompletely measured FRFs, an iterative order reduction method is performed, which makes the identification resistant to the adverse effects of measurement noise. For the minimization process, we adopt a novel meta-heuristic algorithm called bald eagle search algorithm (BES), which has not yet been tested in the field of model updating. Based on the statistical distributions of the identified stiffness parameters in the damaged and undamaged states, the probability of damage existence (PDE) is established to describe the damage probability for each element. The performance of the proposed model updating procedure is verified using three FGM structures: a simple beam, a two-span beam and a cantilever plate. The statistical results indicate that under a high level of noise (15%), the proposed procedure can provide the prediction of damage localization with a high level of confidence and yield damage estimation results with acceptable errors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
汉堡包应助缥缈的涵菡采纳,获得10
4秒前
小二郎应助玩命的篮球采纳,获得10
5秒前
犹豫晓啸完成签到,获得积分10
7秒前
浮浮世世完成签到,获得积分10
9秒前
11秒前
11秒前
12秒前
陈瑶发布了新的文献求助20
13秒前
ding应助超帅大楚采纳,获得30
14秒前
Xiaque发布了新的文献求助10
15秒前
15秒前
天才玩家发布了新的文献求助10
17秒前
18秒前
19秒前
隐形曼青应助SF2768采纳,获得10
21秒前
24秒前
檀江发布了新的文献求助10
25秒前
26秒前
Ching完成签到,获得积分10
28秒前
29秒前
Cosmos完成签到 ,获得积分10
30秒前
31秒前
HuLL完成签到 ,获得积分10
31秒前
32秒前
32秒前
无花果应助檀江采纳,获得10
32秒前
35秒前
37秒前
量子星尘发布了新的文献求助10
37秒前
SF2768发布了新的文献求助10
38秒前
Yu完成签到 ,获得积分10
39秒前
40秒前
明理之桃完成签到 ,获得积分10
42秒前
ZZZ完成签到,获得积分10
42秒前
SF2768完成签到,获得积分10
42秒前
zhangnan完成签到 ,获得积分10
43秒前
魔镜魔镜告诉我有病完成签到,获得积分10
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627693
求助须知:如何正确求助?哪些是违规求助? 4714530
关于积分的说明 14963003
捐赠科研通 4785420
什么是DOI,文献DOI怎么找? 2555122
邀请新用户注册赠送积分活动 1516460
关于科研通互助平台的介绍 1476875