Probabilistic damage identification of FGM structures using model updating procedure based on expansion of incomplete FRF data

概率逻辑 噪音(视频) 鉴定(生物学) 算法 启发式 刚度 缩小 计算机科学 数学优化 工程类 数学 结构工程 人工智能 植物 图像(数学) 生物
作者
Du Dinh-Cong,T. Nguyen-Thoi
出处
期刊:Structures [Elsevier BV]
卷期号:58: 105549-105549
标识
DOI:10.1016/j.istruc.2023.105549
摘要

The spatial incompleteness and uncertainties of measured data are unavoidable factors that could significantly affect the reliability of damage detection results. It is therefore essential to utilize a method that can effectively deal with the spatial incomplete and contaminated data, and presents probabilistic damage identification results instead of deterministic results. In this regard, a probabilistic damage identification approach for functionally graded materials (FGM) structures using model updating procedure based on expansion of incomplete frequency response function (FRF) data with measurement noise is presented. The model updating procedure is formulated as an optimization scheme which is accomplished by minimizing a cost function based on the changes in expanded FRF data. To expand the incompletely measured FRFs, an iterative order reduction method is performed, which makes the identification resistant to the adverse effects of measurement noise. For the minimization process, we adopt a novel meta-heuristic algorithm called bald eagle search algorithm (BES), which has not yet been tested in the field of model updating. Based on the statistical distributions of the identified stiffness parameters in the damaged and undamaged states, the probability of damage existence (PDE) is established to describe the damage probability for each element. The performance of the proposed model updating procedure is verified using three FGM structures: a simple beam, a two-span beam and a cantilever plate. The statistical results indicate that under a high level of noise (15%), the proposed procedure can provide the prediction of damage localization with a high level of confidence and yield damage estimation results with acceptable errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CipherSage应助呆梨医生采纳,获得10
1秒前
jahcenia发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
orixero应助123采纳,获得10
4秒前
伽拉发布了新的文献求助10
5秒前
5秒前
研友_VZG7GZ应助旅行者采纳,获得10
7秒前
xiaohaitao完成签到,获得积分10
7秒前
脑洞疼应助斐嘿嘿采纳,获得10
7秒前
皓民完成签到,获得积分20
8秒前
charles发布了新的文献求助10
8秒前
9秒前
雪饼发布了新的文献求助10
9秒前
IOoOI完成签到,获得积分10
10秒前
李健的粉丝团团长应助wave采纳,获得10
10秒前
支水云完成签到,获得积分10
11秒前
aby发布了新的文献求助10
12秒前
12秒前
优雅的帽子完成签到 ,获得积分20
13秒前
maox1aoxin应助默默夏烟采纳,获得30
13秒前
鉨汏闫完成签到,获得积分10
14秒前
XZZH完成签到,获得积分10
17秒前
收拾收拾应助依然采纳,获得10
17秒前
123发布了新的文献求助10
17秒前
陈宏伟完成签到,获得积分10
18秒前
轻松的惜芹应助伽拉采纳,获得10
18秒前
aby完成签到,获得积分20
20秒前
健康的怡发布了新的文献求助20
21秒前
23秒前
无私的砖头完成签到 ,获得积分10
26秒前
27秒前
28秒前
30秒前
文二目分完成签到 ,获得积分10
30秒前
李爱国应助面面采纳,获得10
32秒前
邵洋发布了新的文献求助30
32秒前
fanfan完成签到,获得积分10
32秒前
默默zzz完成签到 ,获得积分10
33秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160