Unveiling consumer preferences in automotive reviews through aspect-based opinion generation

情绪分析 计算机科学 汽车工业 图形 任务(项目管理) 基线(sea) 人工智能 数据科学 机器学习 理论计算机科学 管理 海洋学 地质学 工程类 航空航天工程 经济
作者
Yang Liu,Jiale Shi,Fei Huang,Jingrui Hou,Chengzhi Zhang
出处
期刊:Journal of Retailing and Consumer Services [Elsevier]
卷期号:77: 103605-103605 被引量:12
标识
DOI:10.1016/j.jretconser.2023.103605
摘要

Unveiling consumer preferences in online reviews is receiving increasing attention. While most existing approaches for consumer preferences have achieved significant improvements, fine-grained sentiment is rarely considered. Fine-grained sentiment analysis involves several essential tasks, such as aspect-opinion recognition, and sentiment orientation analysis. However, existing methods cannot effectively generate an opinion pair, especially when dealing with Chinese automotive reviews. In this paper, we propose a joint course- and fine-grained sentiment analysis of preferences, a new framework for opinion pair generation using graph neural networks (GCN), which optimizes model performance based on aspect-wise sentiment information, as well as our experiments on the course- and fine-grained tasks. Our graph-based multi-grained convolution (CMGC) model outperforms all baselines by at least 1% accuracy in coarse-grained tasks. The results in the fine-grained task are significantly better than the baseline, surpassing the previous state-of-the-art by 1.33% and 3.88% in R and R@1, respectively. Our results can effectively reveal consumer preferences from automotive reviews, which provides business managers with specific marketing strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
echo发布了新的文献求助10
2秒前
6秒前
8秒前
深情安青应助小zhu采纳,获得10
10秒前
一个小胖子完成签到,获得积分10
10秒前
shi hui应助yfy_fairy采纳,获得10
11秒前
虎牙心发布了新的文献求助10
11秒前
LDDLleor完成签到,获得积分10
13秒前
YY发布了新的文献求助10
15秒前
泡沫之夏完成签到,获得积分10
15秒前
xh完成签到 ,获得积分20
17秒前
妮妮完成签到 ,获得积分10
17秒前
浮游应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
Mic应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
宅多点应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
ding应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
Ava应助Chi_bio采纳,获得10
19秒前
19秒前
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
宅多点应助科研通管家采纳,获得10
19秒前
宅多点应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
无花果应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
yyzhou应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560221
求助须知:如何正确求助?哪些是违规求助? 4645390
关于积分的说明 14675061
捐赠科研通 4586534
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490087
关于科研通互助平台的介绍 1460900