Spatial–Temporal Attention Network for Depression Recognition from facial videos

计算机科学 人工智能 模式识别(心理学) 均方误差 空间分析 像素 特征(语言学) 数学 统计 语言学 哲学
作者
Yuchen Pan,Yuanyuan Shang,Tie Liu,Zhuhong Shao,Guodong Guo,Hui Ding,Qiang Hu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121410-121410 被引量:59
标识
DOI:10.1016/j.eswa.2023.121410
摘要

Recent studies focus on the utilization of deep learning approaches to recognize depression from facial videos. However, these approaches have been hindered by their limited performance, which can be attributed to the inadequate consideration of global spatial–temporal relationships in significant local regions within faces. In this paper, we propose Spatial–Temporal Attention Depression Recognition Network (STA-DRN) for depression recognition to enhance feature extraction and increase the relevance of depression recognition by capturing the global and local spatial–temporal information. Our proposed approach includes a novel Spatial–Temporal Attention (STA) mechanism, which generates spatial and temporal attention vectors to capture the global and local spatial–temporal relationships of features. To the best of our knowledge, this is the first attempt to incorporate pixel-wise STA mechanisms for depression recognition based on 3D video analysis. Additionally, we propose an attention vector-wise fusion strategy in the STA module, which combines information from both spatial and temporal domains. We then design the STA-DRN by stacking STA modules ResNet-style. The experimental results on AVEC 2013 and AVEC 2014 show that our method achieves competitive performance, with mean absolute error/root mean square error (MAE/RMSE) scores of 6.15/7.98 and 6.00/7.75, respectively. Moreover, visualization analysis demonstrates that the STA-DRN responds significantly in specific locations related to depression. The code is available at: https://github.com/divertingPan/STA-DRN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
echo发布了新的文献求助10
1秒前
5秒前
7秒前
深情安青应助小zhu采纳,获得10
9秒前
一个小胖子完成签到,获得积分10
9秒前
shi hui应助yfy_fairy采纳,获得10
10秒前
虎牙心发布了新的文献求助10
10秒前
LDDLleor完成签到,获得积分10
12秒前
YY发布了新的文献求助10
14秒前
泡沫之夏完成签到,获得积分10
14秒前
xh完成签到 ,获得积分20
16秒前
妮妮完成签到 ,获得积分10
16秒前
浮游应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
Mic应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
宅多点应助科研通管家采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
Ava应助Chi_bio采纳,获得10
18秒前
18秒前
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
宅多点应助科研通管家采纳,获得10
18秒前
宅多点应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
yyzhou应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560221
求助须知:如何正确求助?哪些是违规求助? 4645390
关于积分的说明 14675061
捐赠科研通 4586534
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490087
关于科研通互助平台的介绍 1460900