Recommender AI Agent: Integrating Large Language Models for Interactive Recommendations

计算机科学 推荐系统 领域(数学分析) 任务(项目管理) 人工智能 万维网 人机交互 数学 数学分析 经济 管理
作者
Xu Huang,Jianxun Lian,Yuxuan Lei,Jing Yao,Defu Lian,Xing Xie
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2308.16505
摘要

Recommender models excel at providing domain-specific item recommendations by leveraging extensive user behavior data. Despite their ability to act as lightweight domain experts, they struggle to perform versatile tasks such as providing explanations and engaging in conversations. On the other hand, large language models (LLMs) represent a significant step towards artificial general intelligence, showcasing remarkable capabilities in instruction comprehension, commonsense reasoning, and human interaction. However, LLMs lack the knowledge of domain-specific item catalogs and behavioral patterns, particularly in areas that diverge from general world knowledge, such as online e-commerce. Finetuning LLMs for each domain is neither economic nor efficient. In this paper, we bridge the gap between recommender models and LLMs, combining their respective strengths to create a versatile and interactive recommender system. We introduce an efficient framework called \textbf{InteRecAgent}, which employs LLMs as the brain and recommender models as tools. We first outline a minimal set of essential tools required to transform LLMs into InteRecAgent. We then propose an efficient workflow within InteRecAgent for task execution, incorporating key components such as memory components, dynamic demonstration-augmented task planning, and reflection. InteRecAgent enables traditional recommender systems, such as those ID-based matrix factorization models, to become interactive systems with a natural language interface through the integration of LLMs. Experimental results on several public datasets show that InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs. The source code of InteRecAgent is released at https://aka.ms/recagent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zxx发布了新的文献求助10
1秒前
忧郁绿柏发布了新的文献求助10
1秒前
艺成成发布了新的文献求助10
1秒前
领导范儿应助Ann采纳,获得10
2秒前
Misty_完成签到,获得积分10
2秒前
2秒前
外向的导师完成签到,获得积分20
3秒前
英姑应助echo采纳,获得10
3秒前
3秒前
羞涩的晓丝完成签到,获得积分10
4秒前
失眠的汽车完成签到,获得积分10
4秒前
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
开放筝完成签到,获得积分10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
5秒前
九川应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
毛毛大王完成签到,获得积分10
5秒前
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
JamesOliver应助科研通管家采纳,获得30
5秒前
迟大猫应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得20
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得30
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
lalalala完成签到,获得积分10
6秒前
6秒前
AireenBeryl531应助一树采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552436
求助须知:如何正确求助?哪些是违规求助? 3128534
关于积分的说明 9378502
捐赠科研通 2827678
什么是DOI,文献DOI怎么找? 1554508
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714961