Spin-Modulated Oxygen Electrocatalysis

自旋态 电催化剂 化学 析氧 自旋极化 磁性 三重态 化学物理 凝聚态物理 电化学 电子 无机化学 物理 物理化学 电极 量子力学 分子 有机化学
作者
Zhi Fang,Wanting Zhao,Tong Shen,Daping Qiu,Yucheng Lv,Xinmei Hou,Yanglong Hou
标识
DOI:10.1021/prechem.3c00059
摘要

The electrocatalysis reactions involving oxygen, such as oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), play a critical role in energy storage/conversion applications, e.g., fuel cells, metal-air batteries, and electrochemical water splitting. The high kinetic energy barrier of the OER/ORR is highly associated with the spin state interconversion between singlet OH–/H2O and triplet O2, which is influenced by the spin state and magnetism of catalysts. This Review summarizes recent progress and advances in understanding spin/magnetism-related effects in oxygen electrocatalysis to develop spin theory. It is demonstrated that the spin states (low, intermediate, and high spin) of magnetic transition metal catalysts (TMCs) can directly affect the reaction barriers of OER/ORR by tailoring the bonding of oxygen intermediates with TMCs. Besides, the spin states of TMCs can build a spin-selective channel to filter the electron spins required for the single/triplet interconversion of O species during OER/ORR. In this Review, we introduced many approaches to modulating spin state, for instance, altering the crystal field, oxidation state of active-site ions, and the morphology of TMCs. What's more, a magnetic field can drive the spin flip of magnetic ions to achieve the spin alignment (↑↑) (i.e., facilitating spin polarization), which will strengthen the spin selectivity for accelerating the filtration and transfer of the spins with the same direction for the generation and conversion of triplet ↑O═O↑. Importantly, the origin of magnetic field enhancement on OER/ORR are deeply discussed, which provides a great vision for the magnetism-assisted catalysis. Finally, the challenges and perspectives for future development of spin/magnetism catalysis are presented. This Review is expected to highlight the significance of spin/magnetism theory in breaking the bottleneck of electrocatalysis field and promote the development of high-efficientcy electrocatalysts for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调研昵称发布了新的文献求助50
刚刚
1秒前
yKkkkkk发布了新的文献求助10
1秒前
怎么可能会凉完成签到 ,获得积分10
2秒前
4秒前
4秒前
大大完成签到,获得积分10
5秒前
5秒前
5秒前
Xiaoxiao应助greenPASS666采纳,获得10
5秒前
现代的秋白完成签到,获得积分10
5秒前
从容的盼晴完成签到,获得积分10
5秒前
scvrl完成签到,获得积分10
6秒前
6秒前
楼寒天发布了新的文献求助10
6秒前
请叫我风吹麦浪应助C2采纳,获得10
8秒前
xlj发布了新的文献求助10
8秒前
8秒前
迷路白桃完成签到,获得积分10
9秒前
kento发布了新的文献求助30
9秒前
眯眯眼的衬衫应助yKkkkkk采纳,获得10
9秒前
小豆包科研冲刺者完成签到,获得积分10
9秒前
黄饱饱完成签到,获得积分10
10秒前
10秒前
传奇3应助CO2采纳,获得10
11秒前
12秒前
称心乐枫完成签到,获得积分10
13秒前
13秒前
22发布了新的文献求助10
13秒前
berry发布了新的文献求助10
13秒前
kingmin应助毛慢慢采纳,获得10
14秒前
完美世界应助顺利鱼采纳,获得10
15秒前
搜集达人应助招财不肥采纳,获得10
16秒前
sweetbearm应助李秋静采纳,获得10
16秒前
Michael_li完成签到,获得积分10
16秒前
whs完成签到,获得积分10
18秒前
科研通AI5应助xlj采纳,获得10
19秒前
再干一杯发布了新的文献求助10
19秒前
20秒前
满意的天完成签到 ,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808