亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Ranking-Based Self-Supervised Learning Training Method for No-Reference Image Quality Assessment

排名(信息检索) 人工智能 计算机科学 培训(气象学) 质量(理念) 机器学习 质量评定 图像(数学) 训练集 自我评估 模式识别(心理学) 心理学 评价方法 地理 工程类 可靠性工程 社会心理学 哲学 认识论 气象学
作者
Han Miao,Qingbing Sang,Xiao-Jun Wu,Zhaohong Deng
标识
DOI:10.2139/ssrn.4528607
摘要

In no-reference image quality assessment, the constructed deep neural network models directly rate the image viewing quality without requiring any reference information. However, due to the specificity of this task, the standard datasets are small, and training deep models using traditional methods leads to overfitting; thus, these methods do not have broad real-life applications. Currently, most scholars mitigate this problem by introducing the idea of self-supervision, where models are first pretrained on automatically generated large-scale datasets and later fine-tuned with mean square error (MSE) loss on a specific dataset. However, this approach trains the model to fit the quality labels of only a single image, ignoring the relative quality relationships between images. Since the relative quality relationship between images significantly impacts the generalization performance of the model, we propose a model training method based on ranking self-supervised learning, through which the training model extracts the relative quality features between images and improves its generalization ability. Specifically, we construct two ranking losses for pretraining and fine-tuning, using pairwise ranking to train the model to rank pictures based on the perceptual quality of the images. Finally, we conduct extensive experiments on the proposed method using three state-of-the-art quality evaluation models on seven publicly available datasets. The experimental results show that the proposed training methods significantly improve the prediction accuracy and generalization ability of the resulting models compared to the traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
ZYP应助科研通管家采纳,获得10
33秒前
Akim应助科研通管家采纳,获得10
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
共享精神应助科研通管家采纳,获得10
33秒前
且慢应助lively采纳,获得10
35秒前
踏实的大神完成签到,获得积分20
43秒前
奋进的熊完成签到,获得积分10
43秒前
53秒前
1分钟前
Rrsssss完成签到 ,获得积分10
1分钟前
tuanheqi应助Anexut采纳,获得20
1分钟前
1分钟前
1分钟前
samsara完成签到 ,获得积分10
1分钟前
黄hhhhhhhh完成签到,获得积分10
2分钟前
赘婿应助youyu采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
2分钟前
大个应助科研通管家采纳,获得10
2分钟前
科研通AI6应助二三采纳,获得10
2分钟前
2分钟前
烛夜黎发布了新的文献求助10
2分钟前
感恩完成签到 ,获得积分10
3分钟前
3分钟前
CodeCraft应助jkj采纳,获得30
3分钟前
xmsyq完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
jkj发布了新的文献求助30
3分钟前
youyu发布了新的文献求助10
4分钟前
甜甜完成签到 ,获得积分10
4分钟前
ZYP应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助youyu采纳,获得10
4分钟前
4分钟前
4分钟前
lulu发布了新的文献求助10
4分钟前
GL发布了新的文献求助30
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488522
求助须知:如何正确求助?哪些是违规求助? 4587370
关于积分的说明 14413747
捐赠科研通 4518727
什么是DOI,文献DOI怎么找? 2476007
邀请新用户注册赠送积分活动 1461524
关于科研通互助平台的介绍 1434427