A Ranking-Based Self-Supervised Learning Training Method for No-Reference Image Quality Assessment

排名(信息检索) 人工智能 计算机科学 培训(气象学) 质量(理念) 机器学习 质量评定 图像(数学) 训练集 自我评估 模式识别(心理学) 心理学 评价方法 地理 工程类 可靠性工程 社会心理学 哲学 认识论 气象学
作者
Han Miao,Qingbing Sang,Xiao-Jun Wu,Zhaohong Deng
标识
DOI:10.2139/ssrn.4528607
摘要

In no-reference image quality assessment, the constructed deep neural network models directly rate the image viewing quality without requiring any reference information. However, due to the specificity of this task, the standard datasets are small, and training deep models using traditional methods leads to overfitting; thus, these methods do not have broad real-life applications. Currently, most scholars mitigate this problem by introducing the idea of self-supervision, where models are first pretrained on automatically generated large-scale datasets and later fine-tuned with mean square error (MSE) loss on a specific dataset. However, this approach trains the model to fit the quality labels of only a single image, ignoring the relative quality relationships between images. Since the relative quality relationship between images significantly impacts the generalization performance of the model, we propose a model training method based on ranking self-supervised learning, through which the training model extracts the relative quality features between images and improves its generalization ability. Specifically, we construct two ranking losses for pretraining and fine-tuning, using pairwise ranking to train the model to rank pictures based on the perceptual quality of the images. Finally, we conduct extensive experiments on the proposed method using three state-of-the-art quality evaluation models on seven publicly available datasets. The experimental results show that the proposed training methods significantly improve the prediction accuracy and generalization ability of the resulting models compared to the traditional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助苗儿采纳,获得10
1秒前
科研dog发布了新的文献求助30
1秒前
1秒前
2秒前
越过山丘发布了新的文献求助10
2秒前
2秒前
阿烨完成签到,获得积分10
2秒前
可爱的大米完成签到,获得积分20
3秒前
3秒前
糯米完成签到,获得积分10
4秒前
4秒前
yyy发布了新的文献求助10
5秒前
奔腾小马发布了新的文献求助10
6秒前
punchline2025完成签到,获得积分10
6秒前
耍酷问兰发布了新的文献求助10
7秒前
97发布了新的文献求助10
7秒前
7秒前
希望天下0贩的0应助jias采纳,获得10
7秒前
Wangle发布了新的文献求助10
8秒前
8秒前
科研通AI6应助可爱的大米采纳,获得30
8秒前
无极微光应助害羞的芙蓉采纳,获得20
8秒前
10秒前
10秒前
10秒前
10秒前
12秒前
13秒前
刘鑫瑞完成签到,获得积分10
13秒前
超级ddl战士完成签到 ,获得积分10
13秒前
大眠完成签到,获得积分10
13秒前
老福贵儿应助科研dog采纳,获得10
14秒前
liuliu发布了新的文献求助10
14秒前
辛勤的喉完成签到,获得积分10
14秒前
nn发布了新的文献求助10
15秒前
左婷发布了新的文献求助10
15秒前
乐乐应助风笑铃采纳,获得10
16秒前
耍酷问兰完成签到,获得积分10
16秒前
17秒前
越过山丘完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540506
求助须知:如何正确求助?哪些是违规求助? 4627108
关于积分的说明 14602337
捐赠科研通 4568126
什么是DOI,文献DOI怎么找? 2504382
邀请新用户注册赠送积分活动 1481998
关于科研通互助平台的介绍 1453645