已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Ranking-Based Self-Supervised Learning Training Method for No-Reference Image Quality Assessment

排名(信息检索) 人工智能 计算机科学 培训(气象学) 质量(理念) 机器学习 质量评定 图像(数学) 训练集 自我评估 模式识别(心理学) 心理学 评价方法 地理 工程类 可靠性工程 社会心理学 哲学 认识论 气象学
作者
Han Miao,Qingbing Sang,Xiao-Jun Wu,Zhaohong Deng
标识
DOI:10.2139/ssrn.4528607
摘要

In no-reference image quality assessment, the constructed deep neural network models directly rate the image viewing quality without requiring any reference information. However, due to the specificity of this task, the standard datasets are small, and training deep models using traditional methods leads to overfitting; thus, these methods do not have broad real-life applications. Currently, most scholars mitigate this problem by introducing the idea of self-supervision, where models are first pretrained on automatically generated large-scale datasets and later fine-tuned with mean square error (MSE) loss on a specific dataset. However, this approach trains the model to fit the quality labels of only a single image, ignoring the relative quality relationships between images. Since the relative quality relationship between images significantly impacts the generalization performance of the model, we propose a model training method based on ranking self-supervised learning, through which the training model extracts the relative quality features between images and improves its generalization ability. Specifically, we construct two ranking losses for pretraining and fine-tuning, using pairwise ranking to train the model to rank pictures based on the perceptual quality of the images. Finally, we conduct extensive experiments on the proposed method using three state-of-the-art quality evaluation models on seven publicly available datasets. The experimental results show that the proposed training methods significantly improve the prediction accuracy and generalization ability of the resulting models compared to the traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xxxx完成签到 ,获得积分10
1秒前
CipherSage应助迪迦采纳,获得10
4秒前
Loserta发布了新的文献求助10
4秒前
5秒前
肥波完成签到,获得积分10
5秒前
5秒前
li完成签到,获得积分10
6秒前
6秒前
7秒前
浮游应助111采纳,获得10
7秒前
7秒前
星空下的皮先生完成签到,获得积分10
8秒前
小蘑菇应助爱听歌凤灵采纳,获得10
10秒前
qqqyoyoyo发布了新的文献求助10
10秒前
11秒前
11秒前
暴走芭比发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
李健的小迷弟应助CTT采纳,获得10
14秒前
科研通AI6应助qqqyoyoyo采纳,获得10
15秒前
韩洋发布了新的文献求助10
15秒前
啊沛啊发布了新的文献求助10
15秒前
15秒前
子凯发布了新的文献求助10
16秒前
16秒前
Anquan发布了新的文献求助10
18秒前
迪迦发布了新的文献求助10
18秒前
19秒前
Owen应助拼搏忆文采纳,获得10
19秒前
TEO完成签到 ,获得积分10
19秒前
番西茄发布了新的文献求助10
21秒前
22秒前
22秒前
子凯完成签到,获得积分10
22秒前
斯文败类应助舒舒采纳,获得10
23秒前
23秒前
Loserta完成签到,获得积分20
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443487
求助须知:如何正确求助?哪些是违规求助? 4553360
关于积分的说明 14241701
捐赠科研通 4475034
什么是DOI,文献DOI怎么找? 2452187
邀请新用户注册赠送积分活动 1443165
关于科研通互助平台的介绍 1418774