A Ranking-Based Self-Supervised Learning Training Method for No-Reference Image Quality Assessment

排名(信息检索) 人工智能 计算机科学 培训(气象学) 质量(理念) 机器学习 质量评定 图像(数学) 训练集 自我评估 模式识别(心理学) 心理学 评价方法 地理 工程类 可靠性工程 社会心理学 哲学 认识论 气象学
作者
Han Miao,Qingbing Sang,Xiao-Jun Wu,Zhaohong Deng
标识
DOI:10.2139/ssrn.4528607
摘要

In no-reference image quality assessment, the constructed deep neural network models directly rate the image viewing quality without requiring any reference information. However, due to the specificity of this task, the standard datasets are small, and training deep models using traditional methods leads to overfitting; thus, these methods do not have broad real-life applications. Currently, most scholars mitigate this problem by introducing the idea of self-supervision, where models are first pretrained on automatically generated large-scale datasets and later fine-tuned with mean square error (MSE) loss on a specific dataset. However, this approach trains the model to fit the quality labels of only a single image, ignoring the relative quality relationships between images. Since the relative quality relationship between images significantly impacts the generalization performance of the model, we propose a model training method based on ranking self-supervised learning, through which the training model extracts the relative quality features between images and improves its generalization ability. Specifically, we construct two ranking losses for pretraining and fine-tuning, using pairwise ranking to train the model to rank pictures based on the perceptual quality of the images. Finally, we conduct extensive experiments on the proposed method using three state-of-the-art quality evaluation models on seven publicly available datasets. The experimental results show that the proposed training methods significantly improve the prediction accuracy and generalization ability of the resulting models compared to the traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研通AI6应助小白采纳,获得10
2秒前
6秒前
水果小王子完成签到 ,获得积分10
6秒前
迟梦发布了新的文献求助10
7秒前
徐安鹏完成签到,获得积分10
8秒前
zhenghang完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
10秒前
自渡完成签到,获得积分20
10秒前
11秒前
11秒前
stephanie_han完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
小萝卜发布了新的文献求助10
15秒前
15秒前
FLY完成签到,获得积分10
15秒前
WTT完成签到,获得积分20
15秒前
sir完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
kk驳回了大模型应助
18秒前
19秒前
赘婿应助迟梦采纳,获得10
19秒前
19秒前
夜雨微眠发布了新的文献求助10
19秒前
20秒前
鱼选发布了新的文献求助10
20秒前
科研通AI6应助weidandan采纳,获得10
21秒前
21秒前
顾矜应助加菲丰丰采纳,获得10
21秒前
23秒前
Shan完成签到 ,获得积分10
23秒前
疏影横斜发布了新的文献求助10
25秒前
自渡发布了新的文献求助10
25秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453860
求助须知:如何正确求助?哪些是违规求助? 4561372
关于积分的说明 14282285
捐赠科研通 4485318
什么是DOI,文献DOI怎么找? 2456660
邀请新用户注册赠送积分活动 1447375
关于科研通互助平台的介绍 1422701