A Ranking-Based Self-Supervised Learning Training Method for No-Reference Image Quality Assessment

排名(信息检索) 人工智能 计算机科学 培训(气象学) 质量(理念) 机器学习 质量评定 图像(数学) 训练集 自我评估 模式识别(心理学) 心理学 评价方法 地理 工程类 可靠性工程 社会心理学 哲学 气象学 认识论
作者
Han Miao,Qingbing Sang,Xiao-Jun Wu,Zhaohong Deng
标识
DOI:10.2139/ssrn.4528607
摘要

In no-reference image quality assessment, the constructed deep neural network models directly rate the image viewing quality without requiring any reference information. However, due to the specificity of this task, the standard datasets are small, and training deep models using traditional methods leads to overfitting; thus, these methods do not have broad real-life applications. Currently, most scholars mitigate this problem by introducing the idea of self-supervision, where models are first pretrained on automatically generated large-scale datasets and later fine-tuned with mean square error (MSE) loss on a specific dataset. However, this approach trains the model to fit the quality labels of only a single image, ignoring the relative quality relationships between images. Since the relative quality relationship between images significantly impacts the generalization performance of the model, we propose a model training method based on ranking self-supervised learning, through which the training model extracts the relative quality features between images and improves its generalization ability. Specifically, we construct two ranking losses for pretraining and fine-tuning, using pairwise ranking to train the model to rank pictures based on the perceptual quality of the images. Finally, we conduct extensive experiments on the proposed method using three state-of-the-art quality evaluation models on seven publicly available datasets. The experimental results show that the proposed training methods significantly improve the prediction accuracy and generalization ability of the resulting models compared to the traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丰富的雪糕完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
OKOK完成签到,获得积分10
1秒前
萌酱发布了新的文献求助10
1秒前
狸猫完成签到 ,获得积分10
1秒前
2秒前
春国应助狗宅采纳,获得10
2秒前
lst完成签到,获得积分10
2秒前
yang发布了新的文献求助10
2秒前
3秒前
momo发布了新的文献求助10
3秒前
3秒前
科研一霸发布了新的文献求助10
4秒前
研友_8YKAdn发布了新的文献求助10
4秒前
漫溢阳光发布了新的文献求助10
4秒前
今天想要吃饭完成签到,获得积分10
5秒前
64658应助lily采纳,获得10
5秒前
luoxuezhiyin完成签到,获得积分10
5秒前
6秒前
杪杪发布了新的文献求助10
6秒前
cen完成签到,获得积分10
6秒前
寒冰发布了新的文献求助10
7秒前
yjn完成签到,获得积分10
7秒前
7秒前
阔达苡完成签到,获得积分10
7秒前
隐形曼青应助buerger采纳,获得10
7秒前
DDda发布了新的文献求助10
9秒前
9秒前
妮妮发布了新的文献求助10
10秒前
10秒前
科研通AI6应助jing采纳,获得10
10秒前
10秒前
司空豁应助科研一霸采纳,获得10
11秒前
司空豁应助科研一霸采纳,获得10
11秒前
思源应助小杨采纳,获得10
11秒前
宝宝来也完成签到,获得积分10
11秒前
11秒前
BSFXZ驳回了晨曦应助
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559624
求助须知:如何正确求助?哪些是违规求助? 3986027
关于积分的说明 12341437
捐赠科研通 3656691
什么是DOI,文献DOI怎么找? 2014540
邀请新用户注册赠送积分活动 1049268
科研通“疑难数据库(出版商)”最低求助积分说明 937586