A Ranking-Based Self-Supervised Learning Training Method for No-Reference Image Quality Assessment

排名(信息检索) 人工智能 计算机科学 培训(气象学) 质量(理念) 机器学习 质量评定 图像(数学) 训练集 自我评估 模式识别(心理学) 心理学 评价方法 地理 工程类 可靠性工程 社会心理学 哲学 认识论 气象学
作者
Han Miao,Qingbing Sang,Xiao-Jun Wu,Zhaohong Deng
标识
DOI:10.2139/ssrn.4528607
摘要

In no-reference image quality assessment, the constructed deep neural network models directly rate the image viewing quality without requiring any reference information. However, due to the specificity of this task, the standard datasets are small, and training deep models using traditional methods leads to overfitting; thus, these methods do not have broad real-life applications. Currently, most scholars mitigate this problem by introducing the idea of self-supervision, where models are first pretrained on automatically generated large-scale datasets and later fine-tuned with mean square error (MSE) loss on a specific dataset. However, this approach trains the model to fit the quality labels of only a single image, ignoring the relative quality relationships between images. Since the relative quality relationship between images significantly impacts the generalization performance of the model, we propose a model training method based on ranking self-supervised learning, through which the training model extracts the relative quality features between images and improves its generalization ability. Specifically, we construct two ranking losses for pretraining and fine-tuning, using pairwise ranking to train the model to rank pictures based on the perceptual quality of the images. Finally, we conduct extensive experiments on the proposed method using three state-of-the-art quality evaluation models on seven publicly available datasets. The experimental results show that the proposed training methods significantly improve the prediction accuracy and generalization ability of the resulting models compared to the traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
July完成签到,获得积分10
1秒前
感动友桃完成签到,获得积分10
3秒前
cantaloupe完成签到,获得积分10
3秒前
郝飞飞完成签到,获得积分10
4秒前
Lucas应助悠悠夏日长采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
away发布了新的文献求助10
5秒前
5秒前
5秒前
Barium完成签到,获得积分10
6秒前
time关注了科研通微信公众号
6秒前
小马甲应助Ashley采纳,获得10
6秒前
小李发布了新的文献求助10
8秒前
8秒前
张一二发布了新的文献求助10
8秒前
坏水完成签到,获得积分10
8秒前
bkagyin应助Auh采纳,获得10
9秒前
乐乐应助李大锤采纳,获得10
10秒前
cjg发布了新的文献求助10
10秒前
小蘑菇应助N9采纳,获得10
10秒前
无限续完成签到,获得积分10
11秒前
11秒前
杨鹏发布了新的文献求助10
11秒前
11秒前
11秒前
Hello应助坦率灵槐采纳,获得10
12秒前
bkagyin应助安晨采纳,获得10
13秒前
贾福运发布了新的文献求助10
13秒前
小羊完成签到,获得积分10
13秒前
时尚青柏发布了新的文献求助10
13秒前
14秒前
丫丫发布了新的文献求助10
14秒前
窝窝窝书完成签到,获得积分10
15秒前
xxt发布了新的文献求助10
15秒前
小青椒应助桃喜芒芒采纳,获得30
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468720
求助须知:如何正确求助?哪些是违规求助? 4572113
关于积分的说明 14333499
捐赠科研通 4498847
什么是DOI,文献DOI怎么找? 2464734
邀请新用户注册赠送积分活动 1453361
关于科研通互助平台的介绍 1427921