A Ranking-Based Self-Supervised Learning Training Method for No-Reference Image Quality Assessment

排名(信息检索) 人工智能 计算机科学 培训(气象学) 质量(理念) 机器学习 质量评定 图像(数学) 训练集 自我评估 模式识别(心理学) 心理学 评价方法 地理 工程类 可靠性工程 社会心理学 哲学 认识论 气象学
作者
Han Miao,Qingbing Sang,Xiao-Jun Wu,Zhaohong Deng
标识
DOI:10.2139/ssrn.4528607
摘要

In no-reference image quality assessment, the constructed deep neural network models directly rate the image viewing quality without requiring any reference information. However, due to the specificity of this task, the standard datasets are small, and training deep models using traditional methods leads to overfitting; thus, these methods do not have broad real-life applications. Currently, most scholars mitigate this problem by introducing the idea of self-supervision, where models are first pretrained on automatically generated large-scale datasets and later fine-tuned with mean square error (MSE) loss on a specific dataset. However, this approach trains the model to fit the quality labels of only a single image, ignoring the relative quality relationships between images. Since the relative quality relationship between images significantly impacts the generalization performance of the model, we propose a model training method based on ranking self-supervised learning, through which the training model extracts the relative quality features between images and improves its generalization ability. Specifically, we construct two ranking losses for pretraining and fine-tuning, using pairwise ranking to train the model to rank pictures based on the perceptual quality of the images. Finally, we conduct extensive experiments on the proposed method using three state-of-the-art quality evaluation models on seven publicly available datasets. The experimental results show that the proposed training methods significantly improve the prediction accuracy and generalization ability of the resulting models compared to the traditional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助夕荀采纳,获得10
1秒前
细腻砖头应助邹益春采纳,获得10
1秒前
1秒前
WD发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
Li应助hsa_ID采纳,获得10
3秒前
微信研友发布了新的文献求助10
3秒前
阿乔发布了新的文献求助10
4秒前
嘿嘿嘿发布了新的文献求助10
4秒前
完美星落完成签到,获得积分10
4秒前
wuhao1完成签到,获得积分20
4秒前
liaoyu发布了新的文献求助10
4秒前
香蕉觅云应助XIAONIE25采纳,获得10
5秒前
guojingjing发布了新的文献求助10
5秒前
lilei发布了新的文献求助10
5秒前
达奚多思完成签到,获得积分10
5秒前
5秒前
纯真忆安发布了新的文献求助10
5秒前
5秒前
RRRRR1完成签到,获得积分20
5秒前
修马儿完成签到,获得积分10
6秒前
科研通AI6应助二胡儿采纳,获得10
6秒前
夕未息关注了科研通微信公众号
6秒前
科目三应助乐乐侠采纳,获得10
7秒前
小管完成签到,获得积分10
7秒前
ZCM发布了新的文献求助10
7秒前
7秒前
暴躁的夏之完成签到,获得积分10
7秒前
7秒前
文思泉涌完成签到,获得积分10
7秒前
ahua完成签到 ,获得积分10
8秒前
虚心早晨完成签到,获得积分10
8秒前
满意静丹发布了新的文献求助10
8秒前
mtj发布了新的文献求助10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285