A Ranking-Based Self-Supervised Learning Training Method for No-Reference Image Quality Assessment

排名(信息检索) 人工智能 计算机科学 培训(气象学) 质量(理念) 机器学习 质量评定 图像(数学) 训练集 自我评估 模式识别(心理学) 心理学 评价方法 地理 工程类 可靠性工程 社会心理学 哲学 认识论 气象学
作者
Han Miao,Qingbing Sang,Xiao-Jun Wu,Zhaohong Deng
标识
DOI:10.2139/ssrn.4528607
摘要

In no-reference image quality assessment, the constructed deep neural network models directly rate the image viewing quality without requiring any reference information. However, due to the specificity of this task, the standard datasets are small, and training deep models using traditional methods leads to overfitting; thus, these methods do not have broad real-life applications. Currently, most scholars mitigate this problem by introducing the idea of self-supervision, where models are first pretrained on automatically generated large-scale datasets and later fine-tuned with mean square error (MSE) loss on a specific dataset. However, this approach trains the model to fit the quality labels of only a single image, ignoring the relative quality relationships between images. Since the relative quality relationship between images significantly impacts the generalization performance of the model, we propose a model training method based on ranking self-supervised learning, through which the training model extracts the relative quality features between images and improves its generalization ability. Specifically, we construct two ranking losses for pretraining and fine-tuning, using pairwise ranking to train the model to rank pictures based on the perceptual quality of the images. Finally, we conduct extensive experiments on the proposed method using three state-of-the-art quality evaluation models on seven publicly available datasets. The experimental results show that the proposed training methods significantly improve the prediction accuracy and generalization ability of the resulting models compared to the traditional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助端庄书雁采纳,获得10
刚刚
咕咚发布了新的文献求助10
刚刚
鱼刺鱼刺卡完成签到,获得积分10
刚刚
高子懿完成签到,获得积分10
刚刚
小土豆完成签到,获得积分10
刚刚
苹果树下的懒洋洋完成签到 ,获得积分10
1秒前
大萌发布了新的文献求助10
1秒前
00完成签到 ,获得积分10
1秒前
风清扬应助等待戈多采纳,获得30
1秒前
laiwei完成签到,获得积分10
2秒前
silin发布了新的文献求助10
2秒前
Wuyi完成签到,获得积分10
2秒前
Kins完成签到,获得积分10
2秒前
yoqiiy发布了新的文献求助10
2秒前
无花果应助Justtry采纳,获得10
2秒前
2秒前
晴天完成签到,获得积分10
2秒前
搜集达人应助ddd采纳,获得10
3秒前
san完成签到,获得积分10
3秒前
蓝天应助Ryan123采纳,获得10
4秒前
看文献的高光谱完成签到,获得积分10
4秒前
AC赵先生完成签到,获得积分10
4秒前
5秒前
shuyan完成签到,获得积分10
5秒前
搜集达人应助1256采纳,获得10
5秒前
希望天下0贩的0应助124578采纳,获得10
6秒前
社牛小柯完成签到,获得积分10
6秒前
罐罐儿完成签到,获得积分0
6秒前
田様应助果嘿嘿采纳,获得10
6秒前
6秒前
paprika完成签到,获得积分10
7秒前
7秒前
科目三应助youknowdcf采纳,获得10
7秒前
wanwei完成签到,获得积分10
8秒前
8秒前
苗佳威完成签到,获得积分10
8秒前
李健应助暖暖采纳,获得10
8秒前
鲜艳的无极完成签到,获得积分20
9秒前
乔尔司空完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959