亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Ranking-Based Self-Supervised Learning Training Method for No-Reference Image Quality Assessment

排名(信息检索) 人工智能 计算机科学 培训(气象学) 质量(理念) 机器学习 质量评定 图像(数学) 训练集 自我评估 模式识别(心理学) 心理学 评价方法 地理 工程类 可靠性工程 社会心理学 哲学 认识论 气象学
作者
Han Miao,Qingbing Sang,Xiao-Jun Wu,Zhaohong Deng
标识
DOI:10.2139/ssrn.4528607
摘要

In no-reference image quality assessment, the constructed deep neural network models directly rate the image viewing quality without requiring any reference information. However, due to the specificity of this task, the standard datasets are small, and training deep models using traditional methods leads to overfitting; thus, these methods do not have broad real-life applications. Currently, most scholars mitigate this problem by introducing the idea of self-supervision, where models are first pretrained on automatically generated large-scale datasets and later fine-tuned with mean square error (MSE) loss on a specific dataset. However, this approach trains the model to fit the quality labels of only a single image, ignoring the relative quality relationships between images. Since the relative quality relationship between images significantly impacts the generalization performance of the model, we propose a model training method based on ranking self-supervised learning, through which the training model extracts the relative quality features between images and improves its generalization ability. Specifically, we construct two ranking losses for pretraining and fine-tuning, using pairwise ranking to train the model to rank pictures based on the perceptual quality of the images. Finally, we conduct extensive experiments on the proposed method using three state-of-the-art quality evaluation models on seven publicly available datasets. The experimental results show that the proposed training methods significantly improve the prediction accuracy and generalization ability of the resulting models compared to the traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
SciGPT应助余甘木采纳,获得10
4秒前
量子星尘发布了新的文献求助10
13秒前
圆圆完成签到 ,获得积分10
16秒前
美罗培南完成签到,获得积分10
16秒前
烨枫晨曦完成签到,获得积分10
23秒前
AliEmbark完成签到,获得积分10
29秒前
xy完成签到 ,获得积分10
35秒前
葛力发布了新的文献求助10
36秒前
43秒前
活力的驳发布了新的文献求助10
47秒前
传奇3应助活力的驳采纳,获得30
53秒前
无花果应助暮光的加纳采纳,获得10
55秒前
好烦完成签到,获得积分10
56秒前
1分钟前
1分钟前
1分钟前
1分钟前
余甘木发布了新的文献求助10
1分钟前
舒服的吗喽完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
lei发布了新的文献求助10
1分钟前
1分钟前
1分钟前
xiaoyy完成签到,获得积分10
1分钟前
脑洞疼应助lei采纳,获得10
2分钟前
xiaoyy发布了新的文献求助10
2分钟前
2分钟前
今后应助暮光的加纳采纳,获得10
2分钟前
2分钟前
2分钟前
暮光的加纳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
vicky完成签到 ,获得积分10
3分钟前
与一完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960064
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128598
捐赠科研通 3238264
什么是DOI,文献DOI怎么找? 1789651
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069