CI_GRU: An efficient DGA botnet classification model based on an attention recurrence plot

计算机科学 人工智能 机器学习 随机森林 僵尸网络 数据挖掘 一般化 领域(数学分析) 模式识别(心理学) 数学 互联网 数学分析 万维网
作者
Han Wang,Zhangguo Tang,Huanzhou Li,Jian Zhang,Shuangcheng Li,Junfeng Wang
出处
期刊:Computer Networks [Elsevier]
卷期号:235: 109992-109992
标识
DOI:10.1016/j.comnet.2023.109992
摘要

Malware is often embedded with domain generation algorithms (DGAs) to prevent firewall interception and domain black-and-white list comparison detection while hiding command and control (C&C) servers to tighten the control of botnets. DGA domains are diverse and difficult to obtain, resulting in highly unbalanced datasets. Domain names generated by different DGA families do not differ much at the sequence data level and it is difficult to extract their features. The above characteristics lead to poor accuracy, poor generalization ability, and bloatedness of DGA domain name classification models based on deep learning. To solve the above problems, the visual representation of sequence data and the DGA domain classification model are presented in this paper. First, the DGA domain name is mapped to the attention recurrence plot (Att_RP) proposed in this paper, which can enrich the data phase space features and differentiate the key phase space features. After that, Att_RP is sent to a DGA domain name classification model (CI_GRU) proposed in this paper for data dimension transformation processing, followed by classification. Experiments show that the classification accuracy, F1_score, and recall of the model for a variety of DGA families in the wild are higher than 99%, and can also accurately classify four types of crafted DGA families. Compared with similar models, the model has high classification accuracy, low time consumption, low generalization error, and high efficiency, and the size of the model is less than one-tenth of similar models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
Hello应助谷粱紫槐采纳,获得10
1秒前
Zeze完成签到,获得积分10
1秒前
机智猴完成签到,获得积分10
1秒前
1秒前
BowieHuang应助666采纳,获得10
2秒前
钱大大完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
阿黎发布了新的文献求助30
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Maestro_S应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Maestro_S应助科研通管家采纳,获得10
5秒前
5秒前
Maestro_S应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得30
5秒前
Owen应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
张嘉伟发布了新的文献求助10
7秒前
7秒前
xz完成签到,获得积分10
7秒前
dq1992完成签到,获得积分10
8秒前
8秒前
9秒前
wings完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752140
求助须知:如何正确求助?哪些是违规求助? 5472900
关于积分的说明 15373131
捐赠科研通 4891251
什么是DOI,文献DOI怎么找? 2630284
邀请新用户注册赠送积分活动 1578475
关于科研通互助平台的介绍 1534465