CI_GRU: An efficient DGA botnet classification model based on an attention recurrence plot

计算机科学 人工智能 机器学习 随机森林 僵尸网络 数据挖掘 一般化 领域(数学分析) 模式识别(心理学) 数学 互联网 数学分析 万维网
作者
Han Wang,Zhangguo Tang,Huanzhou Li,Jian Zhang,Shuangcheng Li,Junfeng Wang
出处
期刊:Computer Networks [Elsevier]
卷期号:235: 109992-109992
标识
DOI:10.1016/j.comnet.2023.109992
摘要

Malware is often embedded with domain generation algorithms (DGAs) to prevent firewall interception and domain black-and-white list comparison detection while hiding command and control (C&C) servers to tighten the control of botnets. DGA domains are diverse and difficult to obtain, resulting in highly unbalanced datasets. Domain names generated by different DGA families do not differ much at the sequence data level and it is difficult to extract their features. The above characteristics lead to poor accuracy, poor generalization ability, and bloatedness of DGA domain name classification models based on deep learning. To solve the above problems, the visual representation of sequence data and the DGA domain classification model are presented in this paper. First, the DGA domain name is mapped to the attention recurrence plot (Att_RP) proposed in this paper, which can enrich the data phase space features and differentiate the key phase space features. After that, Att_RP is sent to a DGA domain name classification model (CI_GRU) proposed in this paper for data dimension transformation processing, followed by classification. Experiments show that the classification accuracy, F1_score, and recall of the model for a variety of DGA families in the wild are higher than 99%, and can also accurately classify four types of crafted DGA families. Compared with similar models, the model has high classification accuracy, low time consumption, low generalization error, and high efficiency, and the size of the model is less than one-tenth of similar models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
搞怪的爆米花完成签到,获得积分10
1秒前
FXQ123_范完成签到,获得积分10
1秒前
witty完成签到,获得积分10
1秒前
乐乐应助zw采纳,获得10
1秒前
小番茄发布了新的文献求助10
2秒前
JarryChao发布了新的文献求助10
2秒前
2秒前
159完成签到 ,获得积分10
2秒前
香蕉诗蕊应助Mangooo采纳,获得10
3秒前
3秒前
是玥玥啊完成签到,获得积分10
3秒前
悦悦发布了新的文献求助10
3秒前
3秒前
科研通AI6应助耍酷的梦桃采纳,获得10
3秒前
乐乐应助cyyyyyy采纳,获得10
4秒前
颜靖仇发布了新的文献求助10
4秒前
皮代谷完成签到,获得积分10
4秒前
5秒前
橙子完成签到,获得积分10
5秒前
清茶完成签到,获得积分10
5秒前
半胖完成签到,获得积分20
5秒前
cyt发布了新的文献求助10
5秒前
尾号6533发布了新的文献求助10
5秒前
qiaoqiao完成签到,获得积分10
5秒前
5秒前
爱库珀应助斑马采纳,获得20
5秒前
6秒前
lc发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
阔达的语海完成签到,获得积分10
7秒前
8秒前
致语发布了新的文献求助10
8秒前
8秒前
今后应助怕孤单的安蕾采纳,获得10
9秒前
张123完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645554
求助须知:如何正确求助?哪些是违规求助? 4769221
关于积分的说明 15030506
捐赠科研通 4804229
什么是DOI,文献DOI怎么找? 2568855
邀请新用户注册赠送积分活动 1526056
关于科研通互助平台的介绍 1485654