CI_GRU: An efficient DGA botnet classification model based on an attention recurrence plot

计算机科学 人工智能 机器学习 随机森林 僵尸网络 数据挖掘 一般化 领域(数学分析) 模式识别(心理学) 数学 互联网 数学分析 万维网
作者
Han Wang,Zhangguo Tang,Huanzhou Li,Jian Zhang,Shuangcheng Li,Junfeng Wang
出处
期刊:Computer Networks [Elsevier]
卷期号:235: 109992-109992
标识
DOI:10.1016/j.comnet.2023.109992
摘要

Malware is often embedded with domain generation algorithms (DGAs) to prevent firewall interception and domain black-and-white list comparison detection while hiding command and control (C&C) servers to tighten the control of botnets. DGA domains are diverse and difficult to obtain, resulting in highly unbalanced datasets. Domain names generated by different DGA families do not differ much at the sequence data level and it is difficult to extract their features. The above characteristics lead to poor accuracy, poor generalization ability, and bloatedness of DGA domain name classification models based on deep learning. To solve the above problems, the visual representation of sequence data and the DGA domain classification model are presented in this paper. First, the DGA domain name is mapped to the attention recurrence plot (Att_RP) proposed in this paper, which can enrich the data phase space features and differentiate the key phase space features. After that, Att_RP is sent to a DGA domain name classification model (CI_GRU) proposed in this paper for data dimension transformation processing, followed by classification. Experiments show that the classification accuracy, F1_score, and recall of the model for a variety of DGA families in the wild are higher than 99%, and can also accurately classify four types of crafted DGA families. Compared with similar models, the model has high classification accuracy, low time consumption, low generalization error, and high efficiency, and the size of the model is less than one-tenth of similar models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang发布了新的文献求助10
1秒前
wanwan发布了新的文献求助10
1秒前
科研通AI2S应助yan123采纳,获得10
2秒前
年轻乘云发布了新的文献求助10
2秒前
球球和波妞完成签到,获得积分10
4秒前
17852573662完成签到,获得积分10
5秒前
充电宝应助萌萌许采纳,获得10
6秒前
6秒前
wang完成签到,获得积分10
8秒前
周洋完成签到,获得积分10
11秒前
duoduo发布了新的文献求助10
14秒前
尾巴会看文献完成签到 ,获得积分10
17秒前
Jasper应助研友_LOoomL采纳,获得10
18秒前
19秒前
20秒前
尾巴会看文献关注了科研通微信公众号
21秒前
阔达的天晴完成签到,获得积分10
22秒前
南栀发布了新的文献求助10
23秒前
Jia发布了新的文献求助10
24秒前
25秒前
laj完成签到,获得积分10
27秒前
27秒前
Jia完成签到,获得积分20
29秒前
情怀应助丝梦采纳,获得10
30秒前
32秒前
37秒前
李健应助冷傲的道罡采纳,获得10
38秒前
39秒前
40秒前
ZZ完成签到,获得积分10
43秒前
43秒前
丝梦发布了新的文献求助10
43秒前
氯丙嗪完成签到 ,获得积分10
44秒前
44秒前
MJQ完成签到,获得积分20
44秒前
MJQ发布了新的文献求助10
47秒前
研友_LOoomL发布了新的文献求助10
47秒前
脑洞疼应助Dream采纳,获得10
48秒前
成熟稳重痴情完成签到,获得积分10
48秒前
splemeth完成签到,获得积分10
49秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266477
求助须知:如何正确求助?哪些是违规求助? 2906193
关于积分的说明 8337216
捐赠科研通 2576689
什么是DOI,文献DOI怎么找? 1400636
科研通“疑难数据库(出版商)”最低求助积分说明 654821
邀请新用户注册赠送积分活动 633708