CI_GRU: An efficient DGA botnet classification model based on an attention recurrence plot

计算机科学 人工智能 机器学习 随机森林 僵尸网络 数据挖掘 一般化 领域(数学分析) 模式识别(心理学) 数学 互联网 数学分析 万维网
作者
Han Wang,Zhangguo Tang,Huanzhou Li,Jian Zhang,Shuangcheng Li,Junfeng Wang
出处
期刊:Computer Networks [Elsevier]
卷期号:235: 109992-109992
标识
DOI:10.1016/j.comnet.2023.109992
摘要

Malware is often embedded with domain generation algorithms (DGAs) to prevent firewall interception and domain black-and-white list comparison detection while hiding command and control (C&C) servers to tighten the control of botnets. DGA domains are diverse and difficult to obtain, resulting in highly unbalanced datasets. Domain names generated by different DGA families do not differ much at the sequence data level and it is difficult to extract their features. The above characteristics lead to poor accuracy, poor generalization ability, and bloatedness of DGA domain name classification models based on deep learning. To solve the above problems, the visual representation of sequence data and the DGA domain classification model are presented in this paper. First, the DGA domain name is mapped to the attention recurrence plot (Att_RP) proposed in this paper, which can enrich the data phase space features and differentiate the key phase space features. After that, Att_RP is sent to a DGA domain name classification model (CI_GRU) proposed in this paper for data dimension transformation processing, followed by classification. Experiments show that the classification accuracy, F1_score, and recall of the model for a variety of DGA families in the wild are higher than 99%, and can also accurately classify four types of crafted DGA families. Compared with similar models, the model has high classification accuracy, low time consumption, low generalization error, and high efficiency, and the size of the model is less than one-tenth of similar models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
7788完成签到,获得积分10
1秒前
FyD关闭了FyD文献求助
2秒前
2秒前
wch发布了新的文献求助10
2秒前
3秒前
瞿绝悟发布了新的文献求助10
3秒前
沉静飞雪完成签到,获得积分10
3秒前
3秒前
聂珩发布了新的文献求助10
3秒前
3秒前
寒冷的书白完成签到,获得积分20
4秒前
橙子发布了新的文献求助10
5秒前
Lucas应助李里哩采纳,获得10
5秒前
腼腆的初蓝完成签到,获得积分10
6秒前
7秒前
wz关注了科研通微信公众号
7秒前
狐妖完成签到,获得积分10
8秒前
wwwwww发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
辛勤秋双发布了新的文献求助20
9秒前
科目三应助亮仔采纳,获得10
9秒前
眯眯眼的小懒虫完成签到,获得积分10
10秒前
10秒前
董钰婷完成签到,获得积分10
10秒前
尊敬的惠发布了新的文献求助80
10秒前
10秒前
萝卜干完成签到,获得积分10
10秒前
10秒前
瑶瑶发布了新的文献求助20
11秒前
大个应助wuhan采纳,获得10
11秒前
XQJ完成签到,获得积分10
11秒前
NINI完成签到 ,获得积分10
11秒前
11秒前
Miianlli完成签到 ,获得积分10
12秒前
77发布了新的文献求助10
12秒前
脆脆鲨发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082