CI_GRU: An efficient DGA botnet classification model based on an attention recurrence plot

计算机科学 人工智能 机器学习 随机森林 僵尸网络 数据挖掘 一般化 领域(数学分析) 模式识别(心理学) 数学 互联网 数学分析 万维网
作者
Han Wang,Zhangguo Tang,Huanzhou Li,Jian Zhang,Shuangcheng Li,Junfeng Wang
出处
期刊:Computer Networks [Elsevier]
卷期号:235: 109992-109992
标识
DOI:10.1016/j.comnet.2023.109992
摘要

Malware is often embedded with domain generation algorithms (DGAs) to prevent firewall interception and domain black-and-white list comparison detection while hiding command and control (C&C) servers to tighten the control of botnets. DGA domains are diverse and difficult to obtain, resulting in highly unbalanced datasets. Domain names generated by different DGA families do not differ much at the sequence data level and it is difficult to extract their features. The above characteristics lead to poor accuracy, poor generalization ability, and bloatedness of DGA domain name classification models based on deep learning. To solve the above problems, the visual representation of sequence data and the DGA domain classification model are presented in this paper. First, the DGA domain name is mapped to the attention recurrence plot (Att_RP) proposed in this paper, which can enrich the data phase space features and differentiate the key phase space features. After that, Att_RP is sent to a DGA domain name classification model (CI_GRU) proposed in this paper for data dimension transformation processing, followed by classification. Experiments show that the classification accuracy, F1_score, and recall of the model for a variety of DGA families in the wild are higher than 99%, and can also accurately classify four types of crafted DGA families. Compared with similar models, the model has high classification accuracy, low time consumption, low generalization error, and high efficiency, and the size of the model is less than one-tenth of similar models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lirongcas完成签到,获得积分20
刚刚
椎名理央完成签到,获得积分10
刚刚
京京关注了科研通微信公众号
刚刚
扶溪筠完成签到,获得积分10
刚刚
1秒前
1秒前
Summer发布了新的文献求助10
1秒前
皮皮完成签到 ,获得积分10
1秒前
隐形曼青应助dean采纳,获得10
1秒前
妮妮发布了新的文献求助10
1秒前
赘婿应助123采纳,获得10
1秒前
Jasper应助鳄鱼采纳,获得10
2秒前
上官若男应助Diio采纳,获得10
2秒前
2秒前
111完成签到,获得积分10
2秒前
3秒前
妖精完成签到,获得积分10
3秒前
4秒前
4秒前
共享精神应助无与伦比采纳,获得10
4秒前
芋头小丸李完成签到,获得积分20
5秒前
wlf发布了新的文献求助10
5秒前
英俊的铭应助科研通管家采纳,获得60
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
5秒前
华仔应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
顾矜应助开朗的宝川采纳,获得10
6秒前
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
无花果应助科研通管家采纳,获得10
6秒前
小米应助科研通管家采纳,获得10
7秒前
Twonej应助SHAO采纳,获得30
7秒前
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759795
求助须知:如何正确求助?哪些是违规求助? 5522143
关于积分的说明 15395458
捐赠科研通 4896764
什么是DOI,文献DOI怎么找? 2633888
邀请新用户注册赠送积分活动 1581947
关于科研通互助平台的介绍 1537419