Optimal sensor placement for permanent magnet synchronous motor condition monitoring using a digital twin-assisted fault diagnosis approach

结构健康监测 计算机科学 可靠性(半导体) 故障检测与隔离 断层(地质) 聚类分析 电流传感器 领域(数学) 工程类 可靠性工程 控制工程 实时计算 功率(物理) 电流(流体) 执行机构 人工智能 电气工程 物理 地质学 结构工程 地震学 量子力学 纯数学 数学
作者
Sara Kohtz,Junhan Zhao,Anabel Renteria,Anand Vikas Lalwani,Yanwen Xu,Xiaolong Zhang,Kiruba S. Haran,Debbie G. Senesky,Pingfeng Wang
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:242: 109714-109714 被引量:9
标识
DOI:10.1016/j.ress.2023.109714
摘要

Efficient health monitoring for identifying and quantifying damages can substantially improve the performance and structural integrity of engineered systems. Specifically, new advances in sensing technologies have pushed the research of large sensor networks to monitor complex mechanical structures. Given the need for health state monitoring, designing an optimal sensor framework with accurate detectability of failure modes has great significance. However, there is often little to no experimental data available for newly proposed mechanical systems; so a digital-twin method would make fault detection feasible for this applications. In this paper, a data-driven reliability-based design optimization (RBDO) approach is employed for sensor placement and fault detection of a permanent magnet synchronous motor (PMSM), which is a relatively new system for high power engineering applications. This system suffers from inter-turn and inter-phase short-winding faults, which can cause catastrophic failure of the whole structure. For PMSMs, current sensing and magnetic field sensing can be utilized for the detection of faults, but actual sensor placement has not been considered in recent literature. In this study, the first step is to create an FEA model of the PMSM for the simulation of faults, which serves as the digital twin. Next, a data-driven approach is implemented for sensor placement and classification of faults. The proposed method utilizes distance clustering for identification of various failure modes, which is suitable for many applications due to its high accuracy and computational efficiency. In addition, a genetic algorithm is implemented to determine the minimum number and optimal placement of sensors. This framework simultaneously searches for the optimal placement of sensors while training the classifier for detectability of system health states. Ultimately, the proposed methodology shows convergence to a solution with high accuracy for detection of faults, and is demonstrated on the novel system of a PMSM with magnetic field sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助jiao采纳,获得30
刚刚
优秀访冬发布了新的文献求助10
1秒前
Jasper应助风槿采纳,获得10
2秒前
SciGPT应助张腾昊采纳,获得10
2秒前
华仔应助夏侯德东采纳,获得10
2秒前
3秒前
3秒前
3秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
酷波er应助动听锦程采纳,获得10
6秒前
6秒前
吴彦祖完成签到,获得积分20
6秒前
wowwyw发布了新的文献求助10
7秒前
7秒前
8秒前
司徒沛蓝完成签到,获得积分10
8秒前
可可完成签到,获得积分10
9秒前
9秒前
9秒前
Kim_发布了新的文献求助10
10秒前
10秒前
11秒前
归海亦云发布了新的文献求助10
12秒前
13秒前
13秒前
SYLH应助fan采纳,获得10
15秒前
16秒前
16秒前
夏侯德东发布了新的文献求助10
16秒前
18秒前
张腾昊发布了新的文献求助10
20秒前
Aaron完成签到,获得积分10
21秒前
小沫发布了新的文献求助10
21秒前
21秒前
司徒沛蓝发布了新的文献求助10
22秒前
22秒前
22秒前
22秒前
wowwyw完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952693
求助须知:如何正确求助?哪些是违规求助? 3498194
关于积分的说明 11090590
捐赠科研通 3228748
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801350