Optimal sensor placement for permanent magnet synchronous motor condition monitoring using a digital twin-assisted fault diagnosis approach

结构健康监测 计算机科学 可靠性(半导体) 故障检测与隔离 断层(地质) 聚类分析 电流传感器 领域(数学) 工程类 可靠性工程 控制工程 实时计算 功率(物理) 电流(流体) 执行机构 人工智能 物理 电气工程 数学 结构工程 量子力学 地震学 纯数学 地质学
作者
Sara Kohtz,Junhan Zhao,Anabel Renteria,Anand Vikas Lalwani,Yanwen Xu,Xiaolong Zhang,Kiruba S. Haran,Debbie G. Senesky,Pingfeng Wang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:242: 109714-109714 被引量:9
标识
DOI:10.1016/j.ress.2023.109714
摘要

Efficient health monitoring for identifying and quantifying damages can substantially improve the performance and structural integrity of engineered systems. Specifically, new advances in sensing technologies have pushed the research of large sensor networks to monitor complex mechanical structures. Given the need for health state monitoring, designing an optimal sensor framework with accurate detectability of failure modes has great significance. However, there is often little to no experimental data available for newly proposed mechanical systems; so a digital-twin method would make fault detection feasible for this applications. In this paper, a data-driven reliability-based design optimization (RBDO) approach is employed for sensor placement and fault detection of a permanent magnet synchronous motor (PMSM), which is a relatively new system for high power engineering applications. This system suffers from inter-turn and inter-phase short-winding faults, which can cause catastrophic failure of the whole structure. For PMSMs, current sensing and magnetic field sensing can be utilized for the detection of faults, but actual sensor placement has not been considered in recent literature. In this study, the first step is to create an FEA model of the PMSM for the simulation of faults, which serves as the digital twin. Next, a data-driven approach is implemented for sensor placement and classification of faults. The proposed method utilizes distance clustering for identification of various failure modes, which is suitable for many applications due to its high accuracy and computational efficiency. In addition, a genetic algorithm is implemented to determine the minimum number and optimal placement of sensors. This framework simultaneously searches for the optimal placement of sensors while training the classifier for detectability of system health states. Ultimately, the proposed methodology shows convergence to a solution with high accuracy for detection of faults, and is demonstrated on the novel system of a PMSM with magnetic field sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悠悠完成签到 ,获得积分10
刚刚
zhengqisong完成签到,获得积分10
2秒前
CherryBoom完成签到,获得积分10
7秒前
9秒前
zi应助曲怜阳采纳,获得10
10秒前
17835152738完成签到,获得积分10
13秒前
13秒前
13秒前
18秒前
雪白路灯发布了新的文献求助10
18秒前
21秒前
zi应助曲怜阳采纳,获得10
24秒前
FashionBoy应助梓曦采纳,获得10
26秒前
26秒前
靓丽从露发布了新的文献求助10
27秒前
Lance完成签到 ,获得积分20
27秒前
34秒前
十里桃花不徘徊完成签到,获得积分10
36秒前
蝉一个夏天完成签到,获得积分10
36秒前
打我呀发布了新的文献求助10
39秒前
linktheboy完成签到,获得积分10
39秒前
40秒前
精明寒松完成签到 ,获得积分10
42秒前
42秒前
英姑应助css1997采纳,获得10
42秒前
种草匠完成签到,获得积分10
42秒前
Chloe完成签到 ,获得积分10
46秒前
失眠山雁完成签到 ,获得积分20
48秒前
扶石完成签到,获得积分10
54秒前
一家人完成签到,获得积分0
55秒前
56秒前
57秒前
1分钟前
炒面摸头小勋猫完成签到,获得积分10
1分钟前
lichenghuan完成签到,获得积分20
1分钟前
css1997发布了新的文献求助10
1分钟前
1111完成签到 ,获得积分10
1分钟前
1分钟前
充电宝应助大方的千雁采纳,获得10
1分钟前
1分钟前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348980
求助须知:如何正确求助?哪些是违规求助? 2975158
关于积分的说明 8667750
捐赠科研通 2655836
什么是DOI,文献DOI怎么找? 1454224
科研通“疑难数据库(出版商)”最低求助积分说明 673254
邀请新用户注册赠送积分活动 663696