Few-shot remaining useful life prediction based on meta-learning with deep sparse kernel network

计算机科学 机器学习 人工智能 推论 过度拟合 预言 核(代数) 数据挖掘 高斯过程 人工神经网络 高斯分布 物理 数学 组合数学 量子力学
作者
Jing Yang,Xiaomin Wang,Zhipeng Luo
出处
期刊:Information Sciences [Elsevier]
卷期号:653: 119795-119795 被引量:23
标识
DOI:10.1016/j.ins.2023.119795
摘要

Predicting remaining useful life (RUL) of machinery is of vital importance to prognostics and health management. Reliable and accurate RUL prediction not only can reduce maintenance costs and increase machine availability but also even prevent catastrophic consequences. In reality, RUL predictions usually require numerous certain kinds of machine degradation data. However, complex operating conditions and safety issues may often result in fragmented data records generated, with very few complete samples being usable. To overcome the challenge of RUL prediction with limited data, this paper proposes a novel MetaDESK model that is based on meta-learning with deep sparse kernel network. The general idea is to train a sparse kernel with a variational posterior in a data-driven fashion, and then transfer it to a new few-shot RUL task via meta-knowledge. Specifically, we first incorporate a Gaussian Process into the model-agnostic meta-learning (MAML) framework and use variational inference to estimate latent variables as kernel features, which allows us to sample from a non-Gaussian distribution of the posterior. Then, the KL-divergence of sparse approximation is added to the kernel features as a regularization term through inference to reduce the overfitting problem. Also, to exploit the dependencies of the tasks we integrate both their shared knowledge and task-specific information into a contextual reasoning process, which is implemented by a bidirectional long short-term memory network. To evaluate our proposed model, we conduct extensive experiments using publicly available degradation data, and the results verify the model's effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZYX发布了新的文献求助10
刚刚
封芷完成签到,获得积分10
刚刚
薯片发布了新的文献求助10
1秒前
san关闭了san文献求助
1秒前
SciGPT应助咕饼采纳,获得10
1秒前
zq完成签到 ,获得积分10
4秒前
5秒前
orixero应助lvzhihao采纳,获得10
6秒前
mingyueye完成签到,获得积分10
6秒前
ding应助李李采纳,获得10
7秒前
oddope完成签到,获得积分20
8秒前
阿六儿完成签到,获得积分10
8秒前
9秒前
杜康完成签到,获得积分10
9秒前
腿腿完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
浮游应助伤脑筋采纳,获得10
11秒前
13秒前
科研通AI6应助乌龟娟采纳,获得10
14秒前
15秒前
依依牙我在做什么给依依牙我在做什么的求助进行了留言
15秒前
15秒前
16秒前
16秒前
老迟到的秋完成签到,获得积分10
16秒前
NexusExplorer应助美好斓采纳,获得10
17秒前
girly完成签到,获得积分10
19秒前
19秒前
bkagyin应助闪闪的问蕊采纳,获得10
20秒前
小羊肖恩发布了新的文献求助10
20秒前
20秒前
Logan发布了新的文献求助10
20秒前
20秒前
keyakey发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
22秒前
李健的小迷弟应助灵散采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462518
求助须知:如何正确求助?哪些是违规求助? 4567225
关于积分的说明 14309649
捐赠科研通 4493103
什么是DOI,文献DOI怎么找? 2461427
邀请新用户注册赠送积分活动 1450522
关于科研通互助平台的介绍 1425854