🔥 科研通第二届『应助活动周』正在进行中,3月24-30日求助秒级响应🚀,千元现金等你拿。当前排名🏆 📚 中科院2025期刊分区📊 已更新
清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting postoperative outcomes in lumbar spinal fusion: development of a machine learning model

医学 腰椎 脊椎滑脱 逻辑回归 腰痛 物理疗法 脊柱融合术 回顾性队列研究 背痛 机器学习 外科 计算机科学 内科学 病理 替代医学
作者
Lukas Schönnagel,Thomas Caffard,Tu‐Lan Vu‐Han,Jiaqi Zhu,Isaac Nathoo,Kyle Finos,Gastón Camino-Willhuber,Soji Tani,Ali E. Guven,Henryk Haffer,Maximilian Muellner,Artine Arzani,Erika Chiapparelli,Krizia Amoroso,Jennifer Shue,Roland Duculan,Matthias Pumberger,Timo Zippelius,Andrew A. Sama,Frank P. Cammisa
出处
期刊:The Spine Journal [Elsevier BV]
卷期号:24 (2): 239-249 被引量:9
标识
DOI:10.1016/j.spinee.2023.09.029
摘要

BACKGROUND CONTEXT Degenerative lumbar spondylolisthesis (DLS) is a prevalent spinal disorder, often requiring surgical intervention. Accurately predicting surgical outcomes is crucial to guide clinical decision-making, but this is challenging due to the multifactorial nature of postoperative results. Traditional risk assessment tools have limitations, and with the advent of machine learning, there is potential to enhance the precision and comprehensiveness of preoperative evaluations. PURPOSE We aimed to develop a machine-learning algorithm to predict surgical outcomes in patients with degenerative lumbar spondylolisthesis (DLS) undergoing spinal fusion surgery, only using preoperative data. STUDY DESIGN Retrospective cross-sectional study. PATIENT SAMPLE Patients with DLS undergoing lumbar spinal fusion surgery. OUTCOME MEASURES This study aimed to predict the occurrence of lower back pain (LBP) ≥4 on the numeric analogue scale (NAS) 2 years after surgery. LBP was evaluated as the average pain patients experienced at rest in the week before questioning. NAS ranges from 0 to 10, 0 representing no pain and 10 representing the worst pain imaginable. METHODS We conducted a retrospective analysis of prospectively enrolled patients who underwent spinal fusion surgery for degenerative lumbar spondylolistheses at our institution in the United States between January 2016 and December 2018. The initial patient characteristics to be included in the training of the model were chosen by clinical expertise and through a literature review and included demographic characteristics, comorbidities, and radiologic features. The data was split into a training and validation datasets using a 60/40 split. Four different machine learning models were trained, including the modern XGBoost model, logistic regression, random-forest, and support vector machine (SVM). The models were evaluated according to the area under the curve (AUC) of the receiver operating characteristics (ROC) curve. An AUC of 0.7 to 0.8 was considered fair, 0.8 to 0.9 good, and ≥ 0.9 excellent. Additionally, a calibration plot and the Brier score were calculated for each model. RESULTS A total of 135 patients (66% female) were included. A total of 38 (28%) patients reported LBP ≥ 4 after 2 years, representing the positive class. The XGBoost model demonstrated the best performance in the validation set with an AUC of 0.81 (95% CI 0.67–0.95). The other machine learning models performed significantly worse: with an AUC of 0.52 (95% CI 0.37–0.68) for the SVM, 0.56 (95% CI 0.37–0.76) for the logistic regression and an AUC of 0.56 (95% CI 0.37–0.78) for the random forest. In the XGBoost model age, composition of the erector spinae, and severity of lumbar spinal stenosis as were identified as the most important features. CONCLUSIONS This study represents a novel approach to predicting surgical outcomes in spinal fusion patients. The XGBoost demonstrated a better performance compared with classical models and highlighted the potential contributions of age and paraspinal musculature atrophy as significant factors. These findings have important implications for enhancing patient care through the identification of high-risk individuals and modifiable risk factors. As the incorporation of machine learning algorithms into clinical decision-making continues to gain traction in research and clinical practice, our insights reinforce this trajectory by showcasing the potential of these techniques in forecasting surgical results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
应助活动周(3月24-30日)排名
今日排名(3月31日)
暂无排名信息,请等待系统更新
第1名:50元;第2名:30元;第3名:10元

总排名
1#10825 nozero
4431
63940
2#9082 SYLH
4508
45740
3#8620 科研小民工
3370
52500
4#8327 shinysparrow
3453
48740
5#4266 xjcy
2126
21400
6#2849 小透明
1125
17240
7#2809 劲秉
635
21740
8#2243 迟大猫
1118
11250
9#2197 天才小能喵
1045
11520
10#1824 CAOHOU
908
9160
11#1781 加菲丰丰
853
9280
12#1717 昏睡的蟠桃
485
12320
13#1609 从容芮
688
9210
14#1249 子车茗
562
6870
15#1214 S77
607
6070
16#1052 浦肯野
432
6200
17#940 cdercder
405
5350
18#930 枫叶
457
4730
19#926 36456657
452
4740
20#738 1+1
324
4140
21#710 史小菜
309
4010
22#697 tuanheqi
61
6360
23#696 果粒橙
348
3480
24#665 curtisness
324
3410
25#654 毛豆
325
3290
26#632 QOP
313
3190
27#592 彭于彦祖
178
4140
28#578 默默地读文献
284
2940
29#536 pcr163
59
4770
30#496 研友_Z30GJ8
247
2490
31#436 HEIKU
218
2180
32#411 火星上的菲鹰
197
2140
33#410 实验好难
190
2200
34#402 遇上就这样吧
194
2080
35#384 VDC
127
2570
36#380 Singularity
189
1910
37#370 Catalina_S
182
1880
38#369 我是站长才怪
181
1880
39#368 cctv18
179
1890
40#366 柒月
64
3020
41#336 从容的惋庭
168
1680
42#326 pluto
161
1650
43#324 lin
161
1630
44#318 言非离
143
1750
45#316 不懈奋进
141
1750
46#316 时丶倾
158
1580
47#311 muxiangrong
133
1780
48#308 贰鸟
142
1660
49#308 8R60d8
154
1540
50#301 一一
98
2030
第1名:500元;第2名:300元;第3名:100元
第4名:50元;第5名:30元;第6-10名:10元

10分钟更新一次,完整排名情况
实时播报
changfox完成签到,获得积分10
刚刚
11秒前
ZHANG完成签到 ,获得积分10
12秒前
灬风尘曦曦丶完成签到,获得积分10
16秒前
juice完成签到 ,获得积分10
16秒前
王波完成签到 ,获得积分10
18秒前
cab_rose完成签到 ,获得积分10
18秒前
思岩完成签到 ,获得积分10
20秒前
xiaofan完成签到,获得积分10
20秒前
yxq完成签到 ,获得积分10
21秒前
沉默的友安完成签到 ,获得积分10
22秒前
小小超完成签到 ,获得积分10
25秒前
nini完成签到,获得积分10
26秒前
为你钟情完成签到 ,获得积分10
32秒前
酱油C给酱油C的求助进行了留言
32秒前
L_x完成签到 ,获得积分10
33秒前
杨宁完成签到 ,获得积分10
42秒前
包佳梁完成签到,获得积分10
45秒前
CHANG完成签到 ,获得积分10
47秒前
今后应助qizhixu采纳,获得10
49秒前
50秒前
51秒前
熊二完成签到,获得积分10
51秒前
Shandongdaxiu完成签到 ,获得积分10
54秒前
qizhixu发布了新的文献求助10
56秒前
寒战完成签到 ,获得积分10
1分钟前
ran完成签到 ,获得积分10
1分钟前
1分钟前
我和你完成签到 ,获得积分10
1分钟前
1分钟前
123完成签到 ,获得积分10
1分钟前
如意竺完成签到,获得积分10
1分钟前
Luna爱科研完成签到 ,获得积分10
1分钟前
kxdxng完成签到 ,获得积分10
1分钟前
忧伤的慕梅完成签到 ,获得积分10
1分钟前
俊逸的白梦完成签到 ,获得积分0
1分钟前
1分钟前
勤劳的颤完成签到 ,获得积分10
1分钟前
qizhixu发布了新的文献求助10
1分钟前
LAIII完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
《中国建设》英文版对中国国家形象的呈现研究(1952-1965) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3650552
求助须知:如何正确求助?哪些是违规求助? 3215165
关于积分的说明 9704298
捐赠科研通 2922779
什么是DOI,文献DOI怎么找? 1600826
邀请新用户注册赠送积分活动 753683
科研通“疑难数据库(出版商)”最低求助积分说明 732846