清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting postoperative outcomes in lumbar spinal fusion: development of a machine learning model

医学 腰椎 脊椎滑脱 逻辑回归 腰痛 物理疗法 脊柱融合术 回顾性队列研究 背痛 机器学习 外科 计算机科学 内科学 病理 替代医学
作者
Lukas Schönnagel,Thomas Caffard,Tu‐Lan Vu‐Han,Jiaqi Zhu,Isaac Nathoo,Kyle Finos,Gastón Camino-Willhuber,Soji Tani,Ali E. Guven,Henryk Haffer,Maximilian Muellner,Artine Arzani,Erika Chiapparelli,Krizia Amoroso,Jennifer Shue,Roland Duculan,Matthias Pumberger,Timo Zippelius,Andrew A. Sama,Frank P. Cammisa
出处
期刊:The Spine Journal [Elsevier BV]
卷期号:24 (2): 239-249 被引量:27
标识
DOI:10.1016/j.spinee.2023.09.029
摘要

BACKGROUND CONTEXT Degenerative lumbar spondylolisthesis (DLS) is a prevalent spinal disorder, often requiring surgical intervention. Accurately predicting surgical outcomes is crucial to guide clinical decision-making, but this is challenging due to the multifactorial nature of postoperative results. Traditional risk assessment tools have limitations, and with the advent of machine learning, there is potential to enhance the precision and comprehensiveness of preoperative evaluations. PURPOSE We aimed to develop a machine-learning algorithm to predict surgical outcomes in patients with degenerative lumbar spondylolisthesis (DLS) undergoing spinal fusion surgery, only using preoperative data. STUDY DESIGN Retrospective cross-sectional study. PATIENT SAMPLE Patients with DLS undergoing lumbar spinal fusion surgery. OUTCOME MEASURES This study aimed to predict the occurrence of lower back pain (LBP) ≥4 on the numeric analogue scale (NAS) 2 years after surgery. LBP was evaluated as the average pain patients experienced at rest in the week before questioning. NAS ranges from 0 to 10, 0 representing no pain and 10 representing the worst pain imaginable. METHODS We conducted a retrospective analysis of prospectively enrolled patients who underwent spinal fusion surgery for degenerative lumbar spondylolistheses at our institution in the United States between January 2016 and December 2018. The initial patient characteristics to be included in the training of the model were chosen by clinical expertise and through a literature review and included demographic characteristics, comorbidities, and radiologic features. The data was split into a training and validation datasets using a 60/40 split. Four different machine learning models were trained, including the modern XGBoost model, logistic regression, random-forest, and support vector machine (SVM). The models were evaluated according to the area under the curve (AUC) of the receiver operating characteristics (ROC) curve. An AUC of 0.7 to 0.8 was considered fair, 0.8 to 0.9 good, and ≥ 0.9 excellent. Additionally, a calibration plot and the Brier score were calculated for each model. RESULTS A total of 135 patients (66% female) were included. A total of 38 (28%) patients reported LBP ≥ 4 after 2 years, representing the positive class. The XGBoost model demonstrated the best performance in the validation set with an AUC of 0.81 (95% CI 0.67–0.95). The other machine learning models performed significantly worse: with an AUC of 0.52 (95% CI 0.37–0.68) for the SVM, 0.56 (95% CI 0.37–0.76) for the logistic regression and an AUC of 0.56 (95% CI 0.37–0.78) for the random forest. In the XGBoost model age, composition of the erector spinae, and severity of lumbar spinal stenosis as were identified as the most important features. CONCLUSIONS This study represents a novel approach to predicting surgical outcomes in spinal fusion patients. The XGBoost demonstrated a better performance compared with classical models and highlighted the potential contributions of age and paraspinal musculature atrophy as significant factors. These findings have important implications for enhancing patient care through the identification of high-risk individuals and modifiable risk factors. As the incorporation of machine learning algorithms into clinical decision-making continues to gain traction in research and clinical practice, our insights reinforce this trajectory by showcasing the potential of these techniques in forecasting surgical results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊哦完成签到 ,获得积分10
24秒前
Gary完成签到 ,获得积分10
35秒前
月儿完成签到 ,获得积分10
1分钟前
王磊完成签到 ,获得积分10
1分钟前
lily完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助20
1分钟前
taoxz521完成签到 ,获得积分10
1分钟前
STEAM发布了新的文献求助20
1分钟前
千空完成签到 ,获得积分10
2分钟前
小洁完成签到 ,获得积分10
2分钟前
haralee完成签到 ,获得积分10
2分钟前
所所应助STEAM采纳,获得10
2分钟前
STEAM完成签到,获得积分10
2分钟前
丘比特应助云汐采纳,获得10
2分钟前
2分钟前
LucyMartinez发布了新的文献求助10
2分钟前
爆米花应助ping采纳,获得10
3分钟前
牛仔完成签到 ,获得积分10
4分钟前
清凉茶完成签到,获得积分10
4分钟前
4分钟前
ping发布了新的文献求助10
4分钟前
海英完成签到,获得积分10
4分钟前
ping完成签到,获得积分10
4分钟前
xiaogu完成签到,获得积分10
4分钟前
5分钟前
xiaogu发布了新的文献求助10
5分钟前
科研通AI6应助xiaogu采纳,获得10
5分钟前
5分钟前
5分钟前
咸烧白胀多了完成签到,获得积分10
5分钟前
xiaozou55完成签到 ,获得积分10
5分钟前
woxinyouyou完成签到,获得积分0
5分钟前
热情笑旋完成签到 ,获得积分20
6分钟前
HYQ完成签到 ,获得积分10
6分钟前
殷勤的涵梅完成签到 ,获得积分10
7分钟前
科研通AI5应助天宝采纳,获得30
7分钟前
和气生财君完成签到 ,获得积分10
7分钟前
邓洁宜完成签到,获得积分10
7分钟前
wanci应助LucyMartinez采纳,获得10
7分钟前
财路通八方完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Impaired Driving as a Public Health Concern and Healthcare Technology Approaches 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5020360
求助须知:如何正确求助?哪些是违规求助? 4258806
关于积分的说明 13271672
捐赠科研通 4064219
什么是DOI,文献DOI怎么找? 2222940
邀请新用户注册赠送积分活动 1231936
关于科研通互助平台的介绍 1155389