Predicting postoperative outcomes in lumbar spinal fusion: development of a machine learning model

医学 腰椎 脊椎滑脱 逻辑回归 腰痛 物理疗法 脊柱融合术 回顾性队列研究 背痛 机器学习 外科 计算机科学 内科学 病理 替代医学
作者
Lukas Schönnagel,Thomas Caffard,Tu‐Lan Vu‐Han,Jiaqi Zhu,Isaac Nathoo,Kyle Finos,Gastón Camino-Willhuber,Soji Tani,Ali E. Guven,Henryk Haffer,Maximilian Muellner,Artine Arzani,Erika Chiapparelli,Krizia Amoroso,Jennifer Shue,Roland Duculan,Matthias Pumberger,Timo Zippelius,Andrew A. Sama,Frank P. Cammisa
出处
期刊:The Spine Journal [Elsevier BV]
卷期号:24 (2): 239-249 被引量:13
标识
DOI:10.1016/j.spinee.2023.09.029
摘要

BACKGROUND CONTEXT Degenerative lumbar spondylolisthesis (DLS) is a prevalent spinal disorder, often requiring surgical intervention. Accurately predicting surgical outcomes is crucial to guide clinical decision-making, but this is challenging due to the multifactorial nature of postoperative results. Traditional risk assessment tools have limitations, and with the advent of machine learning, there is potential to enhance the precision and comprehensiveness of preoperative evaluations. PURPOSE We aimed to develop a machine-learning algorithm to predict surgical outcomes in patients with degenerative lumbar spondylolisthesis (DLS) undergoing spinal fusion surgery, only using preoperative data. STUDY DESIGN Retrospective cross-sectional study. PATIENT SAMPLE Patients with DLS undergoing lumbar spinal fusion surgery. OUTCOME MEASURES This study aimed to predict the occurrence of lower back pain (LBP) ≥4 on the numeric analogue scale (NAS) 2 years after surgery. LBP was evaluated as the average pain patients experienced at rest in the week before questioning. NAS ranges from 0 to 10, 0 representing no pain and 10 representing the worst pain imaginable. METHODS We conducted a retrospective analysis of prospectively enrolled patients who underwent spinal fusion surgery for degenerative lumbar spondylolistheses at our institution in the United States between January 2016 and December 2018. The initial patient characteristics to be included in the training of the model were chosen by clinical expertise and through a literature review and included demographic characteristics, comorbidities, and radiologic features. The data was split into a training and validation datasets using a 60/40 split. Four different machine learning models were trained, including the modern XGBoost model, logistic regression, random-forest, and support vector machine (SVM). The models were evaluated according to the area under the curve (AUC) of the receiver operating characteristics (ROC) curve. An AUC of 0.7 to 0.8 was considered fair, 0.8 to 0.9 good, and ≥ 0.9 excellent. Additionally, a calibration plot and the Brier score were calculated for each model. RESULTS A total of 135 patients (66% female) were included. A total of 38 (28%) patients reported LBP ≥ 4 after 2 years, representing the positive class. The XGBoost model demonstrated the best performance in the validation set with an AUC of 0.81 (95% CI 0.67–0.95). The other machine learning models performed significantly worse: with an AUC of 0.52 (95% CI 0.37–0.68) for the SVM, 0.56 (95% CI 0.37–0.76) for the logistic regression and an AUC of 0.56 (95% CI 0.37–0.78) for the random forest. In the XGBoost model age, composition of the erector spinae, and severity of lumbar spinal stenosis as were identified as the most important features. CONCLUSIONS This study represents a novel approach to predicting surgical outcomes in spinal fusion patients. The XGBoost demonstrated a better performance compared with classical models and highlighted the potential contributions of age and paraspinal musculature atrophy as significant factors. These findings have important implications for enhancing patient care through the identification of high-risk individuals and modifiable risk factors. As the incorporation of machine learning algorithms into clinical decision-making continues to gain traction in research and clinical practice, our insights reinforce this trajectory by showcasing the potential of these techniques in forecasting surgical results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZQ完成签到,获得积分10
2秒前
小包子完成签到,获得积分10
3秒前
liyan完成签到 ,获得积分10
4秒前
5秒前
嗯啊完成签到,获得积分10
7秒前
酷波er应助immm采纳,获得10
8秒前
优雅含莲完成签到 ,获得积分10
8秒前
呜啦啦完成签到,获得积分10
9秒前
9秒前
lulu8809完成签到,获得积分10
12秒前
12秒前
二十五完成签到,获得积分10
13秒前
romeo完成签到,获得积分10
14秒前
kaka完成签到 ,获得积分10
14秒前
Akim应助xialuoke采纳,获得10
14秒前
昏睡的蟠桃应助guoxingliu采纳,获得200
15秒前
慕容松完成签到,获得积分10
16秒前
romeo发布了新的文献求助10
16秒前
ss_hHe完成签到,获得积分10
17秒前
17秒前
18秒前
zjcomposite完成签到,获得积分10
18秒前
nn发布了新的文献求助10
18秒前
css完成签到,获得积分10
18秒前
大橙子发布了新的文献求助10
19秒前
1111完成签到,获得积分10
19秒前
敏er好学完成签到,获得积分10
20秒前
细腻的谷秋完成签到 ,获得积分10
20秒前
独特的易形完成签到,获得积分10
21秒前
yangyangyang完成签到,获得积分0
24秒前
yirenli完成签到,获得积分10
25秒前
叶子完成签到 ,获得积分10
25秒前
angel完成签到,获得积分10
27秒前
正经大善人完成签到,获得积分10
29秒前
动听的秋白完成签到 ,获得积分10
30秒前
汉堡包应助biofresh采纳,获得30
30秒前
自然归尘完成签到 ,获得积分10
31秒前
缓慢海蓝完成签到 ,获得积分10
33秒前
liyiren完成签到,获得积分10
34秒前
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022