已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting postoperative outcomes in lumbar spinal fusion: development of a machine learning model

医学 腰椎 脊椎滑脱 逻辑回归 腰痛 物理疗法 脊柱融合术 回顾性队列研究 背痛 机器学习 外科 计算机科学 内科学 病理 替代医学
作者
Lukas Schönnagel,Thomas Caffard,Tu‐Lan Vu‐Han,Jiaqi Zhu,Isaac Nathoo,Kyle Finos,Gastón Camino-Willhuber,Soji Tani,Ali E. Guven,Henryk Haffer,Maximilian Muellner,Artine Arzani,Erika Chiapparelli,Krizia Amoroso,Jennifer Shue,Roland Duculan,Matthias Pumberger,Timo Zippelius,Andrew A. Sama,Frank P. Cammisa
出处
期刊:The Spine Journal [Elsevier BV]
卷期号:24 (2): 239-249 被引量:13
标识
DOI:10.1016/j.spinee.2023.09.029
摘要

BACKGROUND CONTEXT Degenerative lumbar spondylolisthesis (DLS) is a prevalent spinal disorder, often requiring surgical intervention. Accurately predicting surgical outcomes is crucial to guide clinical decision-making, but this is challenging due to the multifactorial nature of postoperative results. Traditional risk assessment tools have limitations, and with the advent of machine learning, there is potential to enhance the precision and comprehensiveness of preoperative evaluations. PURPOSE We aimed to develop a machine-learning algorithm to predict surgical outcomes in patients with degenerative lumbar spondylolisthesis (DLS) undergoing spinal fusion surgery, only using preoperative data. STUDY DESIGN Retrospective cross-sectional study. PATIENT SAMPLE Patients with DLS undergoing lumbar spinal fusion surgery. OUTCOME MEASURES This study aimed to predict the occurrence of lower back pain (LBP) ≥4 on the numeric analogue scale (NAS) 2 years after surgery. LBP was evaluated as the average pain patients experienced at rest in the week before questioning. NAS ranges from 0 to 10, 0 representing no pain and 10 representing the worst pain imaginable. METHODS We conducted a retrospective analysis of prospectively enrolled patients who underwent spinal fusion surgery for degenerative lumbar spondylolistheses at our institution in the United States between January 2016 and December 2018. The initial patient characteristics to be included in the training of the model were chosen by clinical expertise and through a literature review and included demographic characteristics, comorbidities, and radiologic features. The data was split into a training and validation datasets using a 60/40 split. Four different machine learning models were trained, including the modern XGBoost model, logistic regression, random-forest, and support vector machine (SVM). The models were evaluated according to the area under the curve (AUC) of the receiver operating characteristics (ROC) curve. An AUC of 0.7 to 0.8 was considered fair, 0.8 to 0.9 good, and ≥ 0.9 excellent. Additionally, a calibration plot and the Brier score were calculated for each model. RESULTS A total of 135 patients (66% female) were included. A total of 38 (28%) patients reported LBP ≥ 4 after 2 years, representing the positive class. The XGBoost model demonstrated the best performance in the validation set with an AUC of 0.81 (95% CI 0.67–0.95). The other machine learning models performed significantly worse: with an AUC of 0.52 (95% CI 0.37–0.68) for the SVM, 0.56 (95% CI 0.37–0.76) for the logistic regression and an AUC of 0.56 (95% CI 0.37–0.78) for the random forest. In the XGBoost model age, composition of the erector spinae, and severity of lumbar spinal stenosis as were identified as the most important features. CONCLUSIONS This study represents a novel approach to predicting surgical outcomes in spinal fusion patients. The XGBoost demonstrated a better performance compared with classical models and highlighted the potential contributions of age and paraspinal musculature atrophy as significant factors. These findings have important implications for enhancing patient care through the identification of high-risk individuals and modifiable risk factors. As the incorporation of machine learning algorithms into clinical decision-making continues to gain traction in research and clinical practice, our insights reinforce this trajectory by showcasing the potential of these techniques in forecasting surgical results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
Hayat应助科研通管家采纳,获得10
刚刚
半城微凉应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
wanci应助科研通管家采纳,获得10
1秒前
Hayat应助科研通管家采纳,获得10
1秒前
1秒前
drzz完成签到,获得积分10
2秒前
CheetahAzure发布了新的文献求助10
7秒前
搜集达人应助敏感的南露采纳,获得20
9秒前
kelien1205完成签到 ,获得积分10
11秒前
所所应助zhangzhi采纳,获得10
13秒前
fly完成签到,获得积分10
13秒前
CheetahAzure完成签到,获得积分10
14秒前
zozox完成签到 ,获得积分10
18秒前
23秒前
fengliurencai完成签到,获得积分10
24秒前
无花果应助WillGUO采纳,获得10
24秒前
31秒前
乐乐应助朴实的热狗采纳,获得10
34秒前
薄红发布了新的文献求助10
37秒前
hhr完成签到 ,获得积分10
39秒前
39秒前
派大星完成签到,获得积分10
39秒前
42秒前
ACTIVE发布了新的文献求助10
42秒前
量子星尘发布了新的文献求助10
44秒前
Murphy完成签到 ,获得积分10
45秒前
49秒前
满满完成签到,获得积分10
49秒前
和谐诗双完成签到 ,获得积分10
51秒前
冷先森EPC完成签到,获得积分10
53秒前
薄红完成签到,获得积分20
54秒前
小菡菡发布了新的文献求助10
55秒前
wzzznh完成签到 ,获得积分10
56秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520674
关于积分的说明 11204422
捐赠科研通 3257298
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877842
科研通“疑难数据库(出版商)”最低求助积分说明 806595