钙钛矿(结构)
材料科学
带隙
光致发光
单层
结晶
工作职能
化学工程
分析化学(期刊)
光电子学
纳米技术
图层(电子)
结晶学
化学
有机化学
工程类
作者
Kashimul Hossain,Ashish Kulkarni,Urvashi Bothra,Benjamin Klingebiel,Thomas Kirchartz,Michael Saliba,Dinesh Kabra
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2023-08-25
卷期号:8 (9): 3860-3867
被引量:36
标识
DOI:10.1021/acsenergylett.3c01385
摘要
A [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) self-assembled monolayer (SAM) has been employed in perovskite devices demonstrating high efficiencies. However, a uniform perovskite layer does not form due to the hydrophobicity of Me-4PACz. Here, we tackle this challenge by adding a conjugated polyelectrolyte, poly(9,9-bis(3′-(N,N-dimethyl)-N-ethylammonium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)) dibromide (PFN-Br), to the Me-4PACz in a specific ratio, defined as Pz:PFN. With this mixing engineering strategy using Pz:PFN, the PFN-Br interaction with the A-site cation is confirmed via solution-state nuclear magnetic resonance studies. The narrow full widths at half-maxima of diffraction peaks and photoluminescence spectra of perovskite films reveal improved crystallization at the optimal mixing ratio of Pz:PFN. Interestingly, the mixing of PFN-Br additionally tunes the work function of the Me-4PACz and the built-in voltage in the solar cells. Devices employing the optimized Pz:PFN mixing ratio deliver an open-circuit voltage of 1.16 V and efficiency >20% for perovskites with a bandgap of 1.6 eV with high reproducibility and concomitant stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI