Robust High-Order Control Barrier Functions-Based Optimal Control for Constrained Nonlinear Systems With Safety-Stability Perspectives

李普希茨连续性 控制理论(社会学) 李雅普诺夫函数 稳健性(进化) 非线性系统 指数稳定性 数学优化 数学 鲁棒控制 控制系统 控制Lyapunov函数 Lyapunov重新设计 计算机科学 工程类 控制(管理) 人工智能 数学分析 生物化学 化学 物理 量子力学 电气工程 基因
作者
Jinzhu Peng,Haijing Wang,Shuai Ding,Jing Liang,Yaonan Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 4948-4958
标识
DOI:10.1109/tase.2023.3305485
摘要

In this article, we propose a robust high-order control barrier functions (HoCBFs)-based optimal control method for nonlinear systems with state constraints to achieve safety-stability perspectives. First, a kind of HoCBFs is presented for constrained nonlinear systems to address state constraints with high relative degrees. Second, the robustness property of the HoCBFs is analyzed based on the asymptotic stability of the forward invariant set. Specifically, a robust HoCBFs-based Lyapunov function is constructed to prove the uniform asymptotic stability of the set associated with the HoCBFs. In this way, a new sufficient condition is obtained for the stability analysis of the forward invariant set by using the inequalities of high-order derivatives of Lyapunov function. Third, a robust HoCBFs-based optimal control scheme is proposed for the constrained nonlinear system to achieve the safety-stability perspectives of constraints satisfaction and system stabilization, where the robust HoCBFs are combined with control Lyapunov functions (CLFs) to satisfy the small control property (SCP) in solving a quadratic program (QP). Furthermore, the proposed optimal control scheme is shown to be Lipschitz continuous and has no initial condition restrictions. Finally, two examples are presented to demonstrate the control performance of the proposed scheme. Note to Practitioners —The motivation of this article is that constraints exist widely in actual control systems, and the lack of constraint satisfaction in control systems may inevitably lead to safety defects, which usually degrade the control performances or even damage the entire system. In this article, a robust HoCBFs-based optimal control scheme is proposed for constrained nonlinear systems. The theoretical derivation demonstrates that the proposed control scheme can achieve safety-stability perspectives, which ensure system stabilization and task-oriented performance without violating the state constraints. The satisfactory control performances of the simulation on a constrained robotic manipulator show the potential practical application on a real robotic system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tiko发布了新的文献求助10
2秒前
佳轩肘子发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
bkagyin应助xwz626采纳,获得10
5秒前
大模型应助ZZZ采纳,获得10
6秒前
儒雅紫夏完成签到,获得积分10
8秒前
机智的笑槐应助Liu采纳,获得10
8秒前
强强发布了新的文献求助10
8秒前
9秒前
bao应助佳轩肘子采纳,获得10
9秒前
Jerry发布了新的文献求助10
9秒前
10秒前
白熊IceBear发布了新的文献求助10
10秒前
14秒前
15秒前
科研通AI2S应助小尚要加油采纳,获得10
16秒前
16秒前
哈哈哈发布了新的文献求助10
17秒前
积极从梦发布了新的文献求助10
19秒前
19秒前
Owen应助飘逸问兰采纳,获得100
20秒前
wuhu发布了新的文献求助10
21秒前
勤奋雅容发布了新的文献求助10
21秒前
正直凌文发布了新的文献求助10
21秒前
Tracekite发布了新的文献求助10
21秒前
sseukka完成签到 ,获得积分10
25秒前
Jerry完成签到,获得积分10
26秒前
26秒前
Tracekite完成签到,获得积分10
27秒前
平淡的老师完成签到,获得积分10
28秒前
31秒前
111完成签到,获得积分10
31秒前
妍小九完成签到 ,获得积分10
31秒前
yll完成签到,获得积分10
32秒前
学习发布了新的文献求助10
32秒前
33秒前
pu发布了新的文献求助10
36秒前
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309840
求助须知:如何正确求助?哪些是违规求助? 2943043
关于积分的说明 8512388
捐赠科研通 2618126
什么是DOI,文献DOI怎么找? 1430822
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649478